CORRELATION FUNCTIONS IN THE N=2 SUPERCONFORMAL FIELD THEORY CORRESPONDING TO A CALABI-YAU COMPACTIFICATION

1988 ◽  
Vol 03 (17) ◽  
pp. 1673-1676
Author(s):  
KEI ITO

The four-point correlation functions are calculated in the N=2 superconformal field theory corresponding to a Calabi-Yau compactification of the heterotic string theory.

1992 ◽  
Vol 07 (25) ◽  
pp. 6215-6244 ◽  
Author(s):  
ALBRECHT KLEMM ◽  
STEFAN THEISEN ◽  
MICHAEL G. SCHMIDT

We discuss c≤3 topological Landau-Ginzburg models. In particular we give the potential for the three exceptional models E6,7,8 in the constant metric coordinates of coupling constant space and derive the generating function F for correlation functions. For the c=3 torus cases with one marginal deformation and relevant perturbations, we derive and solve the differential equation resulting from flatness of coupling constant space. We perform the transformation to constant metric coordinates and calculate the generating function F. Comparing the three-point correlation functions with those of orbifold superconformal field theory, we find agreement. We finally demonstrate that the differential equations derived from flatness of coupling constant space are the same as the ones satisfied by the periods of the tori.


2005 ◽  
Vol 20 (03) ◽  
pp. 155-168
Author(s):  
STEFAN GROOT NIBBELINK

Orbifolds in field theory are potentially singular objects for at their fixed points the curvature becomes infinite, therefore one may wonder whether field theory calculations near orbifold singularities can be trusted. String theory is perfectly well defined on orbifolds and can therefore be taken as a UV completion of field theory on orbifolds. We investigate the properties of field and string theory near orbifold singularities by reviewing the computation of a one-loop gauge field tadpole. We find that in string theory the twisted states give contributions that have a spread of a couple of string lengths around the singularity, but otherwise the field theory picture is confirmed. One additional surprise is that in some orbifold models one can identify local tachyons that give contributions near the orbifold fixed point.


2016 ◽  
Vol 31 (01) ◽  
pp. 1550224 ◽  
Author(s):  
Plamen Bozhilov

We compute some normalized structure constants in the [Formula: see text]-deformed [Formula: see text] in the framework of the semiclassical approach. This is done for the cases when the “heavy” string states are finite-size giant magnons carrying one angular momentum and for three different choices of the “light” state: primary scalar operators, dilaton operator with nonzero momentum, singlet scalar operators on higher string levels. Since the dual field theory is still unknown, the results obtained here must be considered as conjectures or as predictions from the string theory side.


2006 ◽  
Vol 21 (19n20) ◽  
pp. 4003-4034 ◽  
Author(s):  
GASTON GIRIBET ◽  
YU NAKAYAMA

Recently, Ribault and Teschner pointed out the existence of a one-to-one correspondence between N-point correlation functions for the SL (2,ℂ)k/ SU (2) WZNW model on the sphere and certain set of 2N-2-point correlation functions in Liouville field theory. This result is based on a seminal work by Stoyanovsky. Here, we discuss the implications of this correspondence focusing on its application to string theory on curved backgrounds. For instance, we analyze how the divergences corresponding to worldsheet instantons in AdS3 can be understood as arising from the insertion of the dual screening operator in the Liouville theory side. We also study the pole structure of N-point functions in the 2D Euclidean black hole and its holographic meaning in terms of the Little String Theory. This enables us to interpret the correspondence between CFT's as encoding a LSZ-type reduction procedure. Furthermore, we discuss the scattering amplitudes violating the winding number conservation in those backgrounds and provide a formula connecting such amplitudes with observables in Liouville field theory. Finally, we study the WZNW correlation functions in the limit k → 0 and show that, at the point k = 0, the Stoyanovsky–Ribault–Teschner dictionary turns out to be in agreement with the FZZ conjecture at a particular point of the space of parameters where the Liouville central charge becomes cL = -2. This result makes contact with recent studies on the dynamical tachyon condensation in closed string theory.


1994 ◽  
Vol 03 (01) ◽  
pp. 285-288 ◽  
Author(s):  
HAN SUELMANN

Heterotic String Theory is an attempt to construct a description of nature that is more satisfying than the Standard Model. A major problem is that it is very difficult to do explicit calculations in string theory. Therefore, it is useful to construct a ’normal’ field theory that approximates HST. The way to construct such a field theory is described briefly. The result is a perturbation expansion in some parameter α′. related to the inverse string tension. There are problems concerning the supersymmetrisation of the [Formula: see text] contribution. These may be caused by the assumption that the action can be written in terms of a local Lagrangian of the physical fields only.


2004 ◽  
Vol 19 (30) ◽  
pp. 2299-2315 ◽  
Author(s):  
ALFREDO HERRERA-AGUILAR

We present a formulation of the stationary bosonic string sector of the whole toroidally compactified effective field theory of the heterotic string as a double Ernst system which, in the framework of general relativity describes, in particular, a pair of interacting spinning black holes; however, in the framework of low-energy string theory the double Ernst system can in particular be interpreted as the rotating field configuration of two interacting sources of black hole type coupled to dilaton and Kalb–Ramond fields. We clarify the rotating character of the Btφ-component of the antisymmetric tensor field of Kalb–Ramond and discuss on its possible torsion nature. We also recall the fact that the double Ernst system possesses a discrete symmetry which is used to relate physically different string vacua. Therefore we apply the normalized Harrison transformation (a charging symmetry which acts on the target space of the low-energy heterotic string theory preserving the asymptotics of the transformed fields and endowing them with multiple electromagnetic charges) on a generic solution of the double Ernst system and compute the generated field configurations for the 4-D effective field theory of the heterotic string. This transformation generates the U (1)n vector field content of the whole low-energy heterotic string spectrum and gives rise to a pair of interacting rotating black holes endowed with dilaton, Kalb–Ramond and multiple electromagnetic fields where the charge vectors are orthogonal to each other.


1993 ◽  
Vol 08 (23) ◽  
pp. 4031-4053
Author(s):  
HOVIK D. TOOMASSIAN

The structure of the free field representation and some four-point correlation functions of the SU(3) conformal field theory are considered.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Keiya Ishiguro ◽  
Tatsuo Kobayashi ◽  
Hajime Otsuka

Abstract We study the impacts of matter field Kähler metric on physical Yukawa couplings in string compactifications. Since the Kähler metric is non-trivial in general, the kinetic mixing of matter fields opens a new avenue for realizing a hierarchical structure of physical Yukawa couplings, even when holomorphic Yukawa couplings have the trivial structure. The hierarchical Yukawa couplings are demonstrated by couplings of pure untwisted modes on toroidal orbifolds and their resolutions in the context of heterotic string theory with standard embedding. Also, we study the hierarchical couplings among untwisted and twisted modes on resolved orbifolds.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Christopher P. Herzog ◽  
Abhay Shrestha

Abstract This paper is designed to be a practical tool for constructing and investigating two-point correlation functions in defect conformal field theory, directly in physical space, between any two bulk primaries or between a bulk primary and a defect primary, with arbitrary spin. Although geometrically elegant and ultimately a more powerful approach, the embedding space formalism gets rather cumbersome when dealing with mixed symmetry tensors, especially in the projection to physical space. The results in this paper provide an alternative method for studying two-point correlation functions for a generic d-dimensional conformal field theory with a flat p-dimensional defect and d − p = q co-dimensions. We tabulate some examples of correlation functions involving a conserved current, an energy momentum tensor and a Maxwell field strength, while analysing the constraints arising from conservation and the equations of motion. A method for obtaining bulk-to-defect correlators is also explained. Some explicit examples are considered: free scalar theory on ℝp× (ℝq/ℤ2) and a free four dimensional Maxwell theory on a wedge.


Sign in / Sign up

Export Citation Format

Share Document