STRING FIELD THEORY AND PHYSICAL INTERPRETATION OF D=1 STRINGS

1990 ◽  
Vol 05 (21) ◽  
pp. 1639-1650 ◽  
Author(s):  
SUMIT R. DAS ◽  
ANTAL JEVICKI

We describe a field theoretic formulation for one-dimensional string theory. It is given by the collective field representation of the matrix model and leads to a physical interpretation of the theory as that of a massless scalar field in two dimensions. The additional dimension, coming from the large-N color of the matrix model, has an extent which goes to infinity in the continuum limit. The interactions of the field theory are non-zero only at the boundaries of this additional dimension.

2011 ◽  
Vol 20 (13) ◽  
pp. 2613-2622 ◽  
Author(s):  
J. SADEGHI ◽  
B. POURHASSAN

The aim of this paper is to use correspondence between solutions in the c = 1 matrix model collective field theory and coupled dilaton-gravity to a massless scalar field. First, we obtain the incoming and outgoing fluctuations for the time-dependent backgrounds with the lightlike and spacelike boundaries. In the case of spacelike boundaries, we have done here for the first time. Then by using the leg-pole transformations we find the corresponding tachyon field in the two-dimensional string theory for the lightlikes and spacelikes boundary.


2002 ◽  
Vol 80 (5) ◽  
pp. 605-612
Author(s):  
B Ding ◽  
J W Darewych

We discuss a variational method for describing relativistic four-body systems within the Hamiltonian formalism of quantum field theory. The scalar Yukawa (or Wick–Cutkosky) model, in which scalar particles and antiparticles interact via a massive or massless scalar field, is used to illustrate the method. A Fock-space variational trial state is used to describe the stationary states of scalar quadronium (two particles and two antiparticles) interacting via one-quantum exchange and virtual annihilation pairwise interactions. Numerical results for the ground-state mass and approximate wave functions of quadronium are presented for various strengths of the coupling, for the massive and massless quantum exchange cases. PACS Nos.: 11.10Ef, 11.10St, 03.70+k, 03.65Pm


1997 ◽  
Vol 12 (31) ◽  
pp. 2331-2340 ◽  
Author(s):  
L. Chekhov ◽  
K. Zarembo

We calculate an effective action and measure induced by the integration over the auxiliary field in the matrix model recently proposed to describe IIB superstrings. It is shown that the measure of integration over the auxiliary matrix is uniquely determined by locality and reparametrization invariance of the resulting effective action. The large-N limit of the induced measure for string coordinates is discussed in detail. It is found to be ultralocal and, thus, is possibly irrelevant in the continuum limit. The model of the GKM type is considered in relation to the effective action problem.


1998 ◽  
Vol 13 (26) ◽  
pp. 2085-2094 ◽  
Author(s):  
B. SATHIAPALAN

We use the matrix formalism to investigate what happens to strings above the Hagedorn temperature. We show that is not a limiting temperature but a temperature at which the continuum string picture breaks down. We study a collection of N D-0-branes arranged to form a string having N units of light-cone momentum. We find that at high temperatures the favored phase is one where the string worldsheet has disappeared and the low-energy degrees of freedom consists of N2 massless particles ("gluons"). The nature of the transition is very similar to the deconfinement transition in large-N Yang–Mills theories.


1995 ◽  
Vol 10 (29) ◽  
pp. 4203-4224 ◽  
Author(s):  
TOHRU EGUCHI ◽  
KENTARO HORI ◽  
SUNG-KIL YANG

In this paper we describe in some detail the representation of the topological CP1 model in terms of a matrix integral which we have introduced in a previous article. We first discuss the integrable structure of the CP1 model and show that it is governed by an extension of the one-dimensional Toda hierarchy. We then introduce a matrix model which reproduces the sum over holomorphic maps from arbitrary Riemann surfaces onto CP1. We compute intersection numbers on the moduli space of curves using a geometrical method and show that the results agree with those predicted by the matrix model. We also develop a Landau-Ginzburg (LG) description of the CP1 model using a superpotential eX + et0,Q e-X given by the Lax operator of the Toda hierarchy (X is the LG field and t0,Q is the coupling constant of the Kähler class). The form of the superpotential indicates the close connection between CP1 and N=2 supersymmetric sine-Gordon theory which was noted sometime ago by several authors. We also discuss possible generalizations of our construction to other manifolds and present an LG formulation of the topological CP2 model.


1994 ◽  
Vol 09 (21) ◽  
pp. 1963-1973 ◽  
Author(s):  
D.V. BOULATOV

The matrix model with a Bethe tree embedding space (coincides at large N with the Kazakov-Migdal “induced QCD” model1) is investigated. We further elaborate the Riemann-Hilbert approach of Ref. 2 assuming certain holomorphic properties of the solution. The critical scaling (an edge singularity of the density) is found to be [Formula: see text][Formula: see text] arccos D, for |D|<1, and [Formula: see text] arccos [Formula: see text] for D>1. Explicit solutions are constructed at D=1/2 and D=∞.


1997 ◽  
Vol 12 (18) ◽  
pp. 1301-1315 ◽  
Author(s):  
B. Sathiapalan

The matrix model for IIB superstring proposed by Ishibashi, Kawai, Kitazawa and Tsuchiya is investigated. Consideration of planar and non-planar diagrams suggests that large-N perturbative expansion is consistent with the double scaling limit proposed by the above authors. We write down a Wilson loop that can be interpreted as a fundamental string vertex operator. The one-point tadpole in the presence of a D-string has the right form and this can be viewed as a matrix model derivation of the boundary conditions that define a D-string. We also argue that if worldsheet coordinates σ and τ are introduced to the fundamental string, then the conjugate variable d/dσ and d/dτ can be interpreted as the D-string worldsheet coordinates. In this way the SL (2Z) duality group of the IIB superstring becomes identified with the symplectic group acting on (p,q).


1999 ◽  
Vol 11 (05) ◽  
pp. 519-532 ◽  
Author(s):  
SEBASTIANO CARPI

We study the problem of recovering Wightman conserved currents from the canonical local implementations of symmetries which can be constructed in the algebraic framework of quantum field theory, in the limit in which the region of localization shrinks to a point. We show that, in a class of models of conformal quantum field theory in space-time dimension 1+1, which includes the free massless scalar field and the SU(N) chiral current algebras, the energy-momentum tensor can be recovered. Moreover we show that the scaling limit of the canonical local implementation of SO(2) in the free complex scalar field is zero, a manifestation of the fact that, in this last case, the associated Wightman current does not exist.


1995 ◽  
Vol 10 (34) ◽  
pp. 2639-2649 ◽  
Author(s):  
AKIKAZU HASHIMOTO ◽  
IGOR R. KLEBANOV

We apply light-cone quantization to a (1+1)-dimensional supersymmetric field theory of large-N matrices. We provide some preliminary numerical evidence that when the coupling constant is tuned to a critical value, this model describes a (2+1)-dimensional noncritical superstring.


1994 ◽  
Vol 09 (34) ◽  
pp. 3149-3162 ◽  
Author(s):  
FUMIHIKO SUGINO ◽  
OSAMU TSUCHIYA

In order to understand the phase structure of d>1 strings we investigate the c=1 matrix model with g′(tr M(t)2)2 interaction which is the simplest approximation of the large-N reduced model of odd-dimensional matrix field theory. We find three distinct phases: (i) an ordinary c=1 gravity phase, (ii) a branched polymer phase and (iii) an intermediate phase, and compute the disk and cylinder amplitudes in the phases (i) and (iii). Further we also analyze the model with slightly generalized [Formula: see text][Formula: see text] interaction. As a result the multi-critical versions of the phase (ii) are found.


Sign in / Sign up

Export Citation Format

Share Document