LIGHT TOP QUARK AND LIGHT CHARGED HIGGS REVISITED

1991 ◽  
Vol 06 (37) ◽  
pp. 3375-3383 ◽  
Author(s):  
ANJAN S. JOSHIPURA ◽  
SAURABH D. RINDANI

A model with two Higgs doublets is presented where a discrete symmetry is imposed so that the flavor-changing neutral currents in the down-quark sector are naturally suppressed and obey a hierarchy determined by the hierarchy of the Kobayashi-Maskawa matrix elements. The fermion couplings to charged-Higgs bosons are different from those in models with natural flavor conservation. As a consequence, it is possible to have a light top quark which evades the Tevatron limit by decaying predominantly into a light charged Higgs with mass M H ≤ mt - mb. The model is also consistent with data on ε and [Formula: see text] mixing for a wide range of M H and the ratio of vacuum expectation values of the scalar fields.

1987 ◽  
Vol 02 (04) ◽  
pp. 1055-1067 ◽  
Author(s):  
Hans-Uno Bengtsson ◽  
Hiroaki Yamamoto ◽  
Sachio Komamiya

We examine the possibility of finding charged Higgs bosons (H±) at the SSC. The charged Higgs boson is produced with a top quark via a gluon+bottom quark interaction (g+b→H+t). For the two Higgs doublet models, H± decays predominantly into t+b. Since the background from QCD processes will be very severe for this decay mode, we studied the H±→τ+ν decay mode. Even for this mode, background from the processes pp→W+t+spectators→ℓ+νℓ+t+spectators will be very high. In the two Higgs doublet models, it is very difficult to extract the charged Higgs signal for reasonable values of the ratio of the two vacuum expectation values ( tan β=v1/v2).


1992 ◽  
Vol 07 (34) ◽  
pp. 3179-3186 ◽  
Author(s):  
AMBAR GHOSAL ◽  
ASIM K. RAY ◽  
SASWATI SARKAR

We discuss a two-generation left-right symmetric model with two Higgs bi-doublets and a discrete symmetry to show that spontaneous CP violation arises as a result of soft breaking of the discrete symmetry. The contributions to the CP violation parameter ε in the [Formula: see text] transition come from the box diagrams due to WL-WR exchanges as well as from the mixing of the real and imaginary parts of the flavor changing neutral Higgs at the tree level and both contributions depend on the relative phase difference between the vacuum expectation values (vevs) of the relevant neutral Higgs scalars. Other CP violating effects in the model are consistent with their experimental values for the appropriate choice of the model parameters. The extension of the model to the realistic case of three generations of fermions does not appreciably change the phenomenology of the model.


1988 ◽  
Vol 03 (11) ◽  
pp. 1099-1105 ◽  
Author(s):  
AMITAVA RAYCHAUDHURI ◽  
SREERUP RAYCHAUDHURI

A supersymmetry-motivated two Higgs doublet model with equal vacuum expectation values for the two neutral Higgs and with a physical charged Higgs mass of 80–100 GeV is carefully examined in the context of its implications for [Formula: see text] mixing. Even with this conservative choice of Higgs parameters, the lower bound on the top quark mass coming from the ARGUS data is found to be considerably relaxed. An upper bound is also set, using results from CLEO and Mark II.


1991 ◽  
Vol 06 (21) ◽  
pp. 1961-1966 ◽  
Author(s):  
THOMAS G. RIZZO

We obtain 95% C. L. upper limits on the ratio of triplet to doublet vacuum expectation values in two extended electroweak models from radiative corrections. We use as input data from LEP, the Tevatron, the CERN [Formula: see text] colliders, and various low-energy experiments such as atomic parity-violation and deep inelastic scattering. The analysis includes the incorporation of leading two-loop electroweak contributions to ∆r and ρ arising from heavy top quarks and Higgs bosons, the Consoli–Hollik–Jegerlehner resummation technique, and QCD corrections to the hadronic partial widths of the Z using the new value for the (αs/π)3 coefficient. Our limits are found to be only mildly sensitive to the top quark and Higgs boson masses and somewhat stronger than those obtained previously. Our results are then generalized to bounds on the allowed value of the tree-level ρ parameter.


2017 ◽  
Vol 32 (23n24) ◽  
pp. 1750145 ◽  
Author(s):  
A. G. Akeroyd ◽  
Stefano Moretti ◽  
Kei Yagyu ◽  
Emine Yildirim

The constraints from the measurements of the [Formula: see text] decay rate on the parameter space of 3-Higgs Doublet Models (3HDMs), where all the doublets have nonzero vacuum expectation values, are studied at the next-to-leading order in QCD. In order to naturally avoid the presence of flavour changing neutral currents at the tree level, we impose two softly-broken discrete [Formula: see text] symmetries. This gives rise to five independent types of 3HDMs that differ in their Yukawa couplings. We show that in all these 3HDMs (including the case of type-II-like Yukawa interactions) both masses of the two charged Higgs bosons [Formula: see text] and [Formula: see text] can be smaller than the top mass [Formula: see text] while complying with the constraints from [Formula: see text]. As an interesting phenomenological consequence, the branching ratios of the charged Higgs bosons decay into the [Formula: see text] final states can be as large as [Formula: see text] when their masses are taken to be below [Formula: see text] in two of the five 3HDMs (named as Type-Y and Type-Z). This light charged Higgs boson scenario provides a hallmark 3HDM signature that cannot be realised in [Formula: see text] symmetric 2-Higgs doublet models. We find that in the Type-Y and Type-Z 3HDMs the scenario with [Formula: see text], [Formula: see text] is ruled out by the direct searches at the LHC, but in the Type-Y 3HDM [Formula: see text] and [Formula: see text] is allowed by [Formula: see text] and direct searches at LEP2, Tevatron and LHC due to the reduced sensitivity of these searches to the degenerate case [Formula: see text]. The cases where only one or both charged Higgs bosons are above the top quark mass are also naturally allowed in the both Type-Y and Type-Z 3HDMs.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Junxing Pan ◽  
Jung-Hsin Chen ◽  
Xiao-Gang He ◽  
Gang Li ◽  
Jhih-Ying Su

AbstractIn this work, we study the potential of searching for triply charged Higgs boson originating from a complex Higgs quadruplet in the final state with at least three same-sign leptons. A detailed collider analysis of the SM backgrounds and signals is performed at a 100 TeV pp collider for the triply charged Higgs boson mass below 1 TeV and the Higgs quadruplet vacuum expectation value $$v_\Delta $$ v Δ ranging from $$1.5\times 10^{-9}~\text {GeV}$$ 1.5 × 10 - 9 GeV to $$1.3~\text {GeV}$$ 1.3 GeV and the mass splitting $$\Delta m$$ Δ m between the nearby states of the Higgs quadruplet satisfying $$|\Delta m|\lesssim 30~\text {GeV}$$ | Δ m | ≲ 30 GeV . About $$100~\text {fb}^{-1}$$ 100 fb - 1 of data are required at most for $$5\sigma $$ 5 σ discovery. We also revisit the sensitivity at the Large Hadron Collider (LHC) and find that $$5\sigma $$ 5 σ discovery of the triply charged Higgs boson below 1 TeV can be reached for a relatively small $$v_\Delta $$ v Δ . For example, if $$v_\Delta =10^{-6}~\text {GeV}$$ v Δ = 10 - 6 GeV and $$\Delta m=0$$ Δ m = 0 , the integrated luminosity of $$330~\text {fb}^{-1}$$ 330 fb - 1 is needed. But for a relatively large $$v_\Delta $$ v Δ , i.e., $$v_\Delta \gtrsim 10^{-3}~\text {GeV}$$ v Δ ≳ 10 - 3 GeV , the triply charged Higgs boson above about 800 GeV cannot be discovered even in the high-luminosity LHC era. For $$\Delta m>0$$ Δ m > 0 , the cascade decays are open and the sensitivity can be improved depending on the value of $$v_\Delta $$ v Δ .


2018 ◽  
Vol 98 (11) ◽  
Author(s):  
Abdesslam Arhrib ◽  
Adil Jueid ◽  
Stefano Moretti

2020 ◽  
Vol 35 (15n16) ◽  
pp. 2041011 ◽  
Author(s):  
Abdesslam Arhrib ◽  
Adil Jueid ◽  
Stefano Moretti

We study the production of a heavy charged Higgs boson at the Large Hadron Collider (LHC) in [Formula: see text] within a 2-Higgs Doublet Model (2HDM). The chiral structure of the [Formula: see text] coupling can trigger a particular spin state of the top quark produced in the decay of a charged Higgs boson and, therefore, is sensitive to the underlying mechanism of the Electroweak Symmetry Breaking (EWSB). Taking two benchmark models (2HDM type-I and 2HDM type-Y) as an example, we show that inclusive rates, differential distributions and forward–backward asymmetries of the top quark’s decay products can be used to search for heavy charged Higgs bosons and also as model discriminators.


Sign in / Sign up

Export Citation Format

Share Document