scholarly journals NON-RENORMALIZATION THEOREM FOR THE GAUGE COUPLING IN 2+1 DIMENSIONS

1994 ◽  
Vol 09 (21) ◽  
pp. 1925-1932 ◽  
Author(s):  
A.N. KAPUSTIN ◽  
P.I. PRONIN

We prove that the β-function of the gauge coupling in 2+1 dimensions gauge theory coupled to any renormalizable system of spinor and scalar fields is zero. This result holds both when the gauge field action is the Chern-Simons action and when it is the topologically massive action.

1998 ◽  
Vol 12 (05) ◽  
pp. 173-180 ◽  
Author(s):  
P. A. Marchetti ◽  
Zhao-Bin Su ◽  
Lu Yu

The U(1)×SU(2) Chern–Simons gauge theory is applied to study the 2D t–J model describing the normal state of underdoped cuprate superconductors. The U(1) field produces a flux phase for holons converting them into Dirac-like fermions, while the SU(2) field, due to the coupling to holons gives rise to a gap for spinons. An effective low-energy action involving holons, spinons and a self-generated U(1) gauge field is derived. The Fermi surface and electron spectral function obtained are consistent with photoemission experiments. The theory predicts a minimal gap proportional to doping concentration. It also explains anomalous transport properties.


1991 ◽  
Vol 06 (05) ◽  
pp. 391-398 ◽  
Author(s):  
ASHOK CHATTERJEE ◽  
V.V. SREEDHAR

An explicit extension of Polyakov’s analysis of a scalar particle coupled to an Abelian Chern-Simons gauge theory to the case of two particles and arbitrary values of the coupling is given. A simple proof of the emergence of fractional statistics induced by the gauge field follows within the path-integral framework.


2004 ◽  
Vol 01 (04) ◽  
pp. 493-544 ◽  
Author(s):  
STEPHEN C. ANCO

A basic problem of classical field theory, which has attracted growing attention over the past decade, is to find and classify all nonlinear deformations of linear abelian gauge theories. The physical interest in studying deformations is to address uniqueness of known nonlinear interactions of gauge fields and to look systematically for theoretical possibilities for new interactions. Mathematically, the study of deformations aims to understand the rigidity of the nonlinear structure of gauge field theories and to uncover new types of nonlinear geometrical structures. The first part of this paper summarizes and significantly elaborates a field-theoretic deformation method developed in earlier work. Some key contributions presented here are, firstly, that the determining equations for deformation terms are shown to have an elegant formulation using Lie derivatives in the jet space associated with the gauge field variables. Secondly, the obstructions (integrability conditions) that must be satisfied by lowest-order deformations terms for existence of a deformation to higher orders are explicitly identified. Most importantly, a universal geometrical structure common to a large class of nonlinear gauge theory examples is uncovered. This structure is derived geometrically from the deformed gauge symmetry and is characterized by a covariant derivative operator plus a nonlinear field strength, related through the curvature of the covariant derivative. The scope of these results encompasses Yang–Mills theory, Freedman–Townsend theory, and Einstein gravity theory, in addition to their many interesting types of novel generalizations that have been found in the past several years. The second part of the paper presents a new geometrical type of Yang–Mills generalization in three dimensions motivated from considering torsion in the context of nonlinear sigma models with Lie group targets (chiral theories). The generalization is derived by a deformation analysis of linear abelian Yang–Mills Chern–Simons gauge theory. Torsion is introduced geometrically through a duality with chiral models obtained from the chiral field form of self-dual (2+2) dimensional Yang–Mills theory under reduction to (2+1) dimensions. Field-theoretic and geometric features of the resulting nonlinear gauge theories with torsion are discussed.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Koichi Harada ◽  
Pei-Ming Ho ◽  
Yutaka Matsuo ◽  
Akimi Watanabe

Abstract In the matrix model approaches of string/M theories, one starts from a generic symmetry gl(∞) to reproduce the space-time manifold. In this paper, we consider the generalization in which the space-time manifold emerges from a gauge symmetry algebra which is not necessarily gl(∞). We focus on the second nontrivial example after the toroidal compactification, the coset space G/H, and propose a specific infinite-dimensional symmetry which realizes the geometry. It consists of the gauge-algebra valued functions on the coset and Lorentzian generator pairs associated with the isometry. We show that the 0-dimensional gauge theory with the mass and Chern-Simons terms gives the gauge theory on the coset with scalar fields associated with H.


1992 ◽  
Vol 07 (05) ◽  
pp. 1007-1023 ◽  
Author(s):  
KAORU AMANO ◽  
HIROSHI SHIROKURA

We quantize the three-dimensional O(2) pure Chern–Simons gauge field theory in a functional coherent-state representation. Both trivial and nontrivial flat O(2) bundles admit physical states. An explicit calculation relates the state functionals to the rational Z2-orbifold models.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
A. Bochniak ◽  
B. Ruba

Abstract We study the properties of a bosonization procedure based on Clifford algebra valued degrees of freedom, valid for spaces of any dimension. We present its interpretation in terms of fermions in presence of ℤ2 gauge fields satisfying a modified Gauss’ law, resembling Chern-Simons-like theories. Our bosonization prescription involves constraints, which are interpreted as a flatness condition for the gauge field. Solution of the constraints is presented for toroidal geometries of dimension two. Duality between our model and (d − 1)- form ℤ2 gauge theory is derived, which elucidates the relation between the approach taken here with another bosonization map proposed recently.


2001 ◽  
Vol 16 (11) ◽  
pp. 679-684
Author(s):  
JUNGJAI LEE ◽  
YEONG DEOK HAN

In D-dimensional gauge theory with a kinetic term based on p-form tensor gauge field, we introduce a gauge-invariant operator associated with the composite form from an electric (p - 1)-brane and a magnetic (q - 1)-brane in D = p + q + 1 space–time dimensions. By evaluating the partition function of this operator, we show that the expectation value of this operator gives rise to the topological contributions identical to those in gauge theory with a topological Chern–Simons BF term.


2020 ◽  
Vol 35 (05) ◽  
pp. 2050020
Author(s):  
Jialiang Dai

We construct the extended BRST and anti-BRST transformation by considering a shift symmetry both in Abelian and non-Abelian Chern–Simons theories coupled to scalar fields using the approach of Batalin–Vilkovisky quantization. The extended BRST invariant Lagrangian density is able to be addressed in the framework of superfield formalism with one fermionic coordinate. In the case of extended BRST–anti-BRST symmetry, it is shown that the Batalin–Vilkovisky action of the theory can be expressed in a covariant form with two fermionic coordinates in the superspace.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk of AdS3, namely the Ryu-Takayanagi geodesic minimally coupled to the U(1) Chern-Simons gauge field. We identify the holonomy around the Wilson line as the Aharonov-Bohm phases which, in the two-dimensional field theory, are generated by charged U(1) vertex operators inserted at the endpoints of the entangling interval. Furthermore, we devise a new method to calculate the symmetry resolved entanglement entropy by relating the generating function for the charged moments to the amount of charge in the entangling subregion. We calculate the subregion charge from the U(1) Chern-Simons gauge field sourced by the bulk Wilson line. We use our method to derive the symmetry-resolved entanglement entropy for Poincaré patch and global AdS3, as well as for the conical defect geometries. In all three cases, the symmetry resolved entanglement entropy is determined by the length of the Ryu-Takayanagi geodesic and the Chern-Simons level k, and fulfills equipartition of entanglement. The asymptotic symmetry algebra of the bulk theory is of $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody type. Employing the $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry, we confirm our holographic results by a calculation in the dual conformal field theory.


Sign in / Sign up

Export Citation Format

Share Document