scholarly journals Quantum Decoherence in a Four-Dimensional Black Hole Background

1997 ◽  
Vol 12 (04) ◽  
pp. 243-256 ◽  
Author(s):  
John Ellis ◽  
N. E. Mavromatos ◽  
Elizabeth Winstanley ◽  
D. V. Nanopoulos

We display a logarithmic divergence in the density matrix of a scalar field in the presence of an Einstein–Yang–Mills black hole in four dimensions. This divergence is related to a previously-found logarithmic divergence in the entropy of the scalar field, which cannot be absorbed into a renormalization of the Hawking–Bekenstein entropy of the black hole. Motivated by the fact that the cutoff in this divergence varies as the latter decays, by an analysis of black holes in two-dimensional string models and by studies of D-brane dynamics in higher dimensions, we propose that the renormalization scale variable be identified with time. In this case, the logarithmic divergence we find induces a non-commutator term [Formula: see text] in the quantum Liouville equation for the time evolution of the density matrix ρ of the scalar field, leading to quantum decoherence. The order of magnitude of [Formula: see text] is μ2/M P , where μ is the mass of the scalar particle.

2009 ◽  
Vol 680 (5) ◽  
pp. 500-505 ◽  
Author(s):  
Sayan K. Chakrabarti ◽  
Pulak Ranjan Giri ◽  
Kumar S. Gupta

2015 ◽  
Vol 30 (13) ◽  
pp. 1550069
Author(s):  
Yan Peng ◽  
Guohua Liu

We study general models for holographic superconductors with higher correction terms of the scalar field in the four-dimensional AdS black hole background including the matter fields' backreaction on the metric. We explore the effects of the model parameters on the scalar condensation and find that different values of model parameters can determine the order of phase transitions. Moreover, we find that the higher correction terms provide richer physics in the phase transition diagram.


2002 ◽  
Vol 17 (20) ◽  
pp. 2767-2767
Author(s):  
JOSÉ P. S. LEMOS ◽  
VITOR CARDOSO

In the context of the AdS/CFT conjecture1, a Schwarzschild-anti-de Sitter (SAdS) black hole may be looked at as a thermal state in the CFT. Perturbing the black hole corresponds in the CFT to perturb the thermal state. We considered an important specific perturbation - the radial infall of a small test particle coupled to a scalar field into a SAdS black hole. We computed the spectra, waveforms and total scalar energy radiated during this process. For small black holes, the spectra is dominated by a resonance, and the waveform by quasinormal ringing2,3,4. For large black holes we find that the waveform quickly settles down to its final zero value, always in a quasinormal way. The approach to thermal equilibrium in the CFT is therefore dictated by the lowest quasinormal frequency. We also commented on the interpretation of the bulk process when viewed from the brane: to the black hole corresponds a thermal bath, to the infalling probe corresponds an expanding bubble, and to the scalar field waves correspond particles decaying into bosons of the associate operator of the gauge theory. For more details see5,6.


Author(s):  
Hong Guo ◽  
Xiao-Mei Kuang ◽  
Eleftherios Papantonopoulos ◽  
Bin Wang

AbstractBlack hole spontaneous scalarization has been attracting more and more attention as it circumvents the well-known no-hair theorems. In this work, we study the scalarization in Einstein–scalar-Gauss–Bonnet theory with a probe scalar field in a black hole background with different curvatures. We first probe the signal of black hole scalarization with positive curvature in different spacetimes. The scalar field in AdS spacetime could be formed easier than that in flat case. Then, we investigate the scalar field around AdS black holes with negative and zero curvatures. Comparing with negative and zero cases, the scalar field near AdS black hole with positive curvature could be much easier to emerge. And in negative curvature case, the scalar field is the most difficult to be bounded near the horizon.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Roberto Auzzi ◽  
Stefano Baiguera ◽  
Sara Bonansea ◽  
Giuseppe Nardelli ◽  
Kristian Toccacelo

Abstract We investigate the complexity=volume proposal in the case of Janus AdS3 geometries, both at zero and finite temperature. The leading contribution coming from the Janus interface is a logarithmic divergence, whose coefficient is a function of the dilaton excursion. In the presence of the defect, complexity is no longer topological and becomes temperature-dependent. We also study the time evolution of the extremal volume for the time-dependent Janus BTZ black hole. This background is not dual to an interface but to a pair of entangled CFTs with different values of the couplings. At late times, when the equilibrium is restored, the couplings of the CFTs do not influence the complexity rate. On the contrary, the complexity rate for the out-of-equilibrium system is always smaller compared to the pure BTZ black hole background.


Sign in / Sign up

Export Citation Format

Share Document