scholarly journals PAIR PRODUCTION IN A TIME-DEPENDENT MAGNETIC FIELD

1999 ◽  
Vol 14 (18) ◽  
pp. 1183-1192 ◽  
Author(s):  
GIORGIO CALUCCI

The production of electron–positron pairs in a time-dependent magnetic field is estimated in the hypotheses that the magnetic field is uniform over large distances with respect to the pair localization and it is so strong that the spacing of the Landau levels is larger than the rest mass of the particles. This calculation is presented since it has been suggested that extremely intense and varying magnetic fields may be found around some astrophysical objects.

Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
S. Villalba-Chávez ◽  
A. E. Shabad ◽  
C. Müller

AbstractFor magnetic fields larger than the characteristic scale linked to axion-electrodynamics, quantum vacuum fluctuations due to axion-like fields can dominate over those associated with the electron-positron fields. This conjecture is explored by investigating both the axion-modified photon capture by a strong magnetic field and the Coulomb potential of a static pointlike charge. We show that in magnetic fields characteristic of neutron stars $$\sim 10^{13}$$ ∼ 10 13 –$$10^{15}\;\mathrm{G}$$ 10 15 G , the capture of gamma photons prior to the production of a pair can prevent the existence of an electron-positron plasma, essential for explaining the pulsar radiation mechanism. This incompatibility is used to limit the axion parameter space. Our bounds improve existing outcomes in the region of mass $$m\sim 10^{-10}$$ m ∼ 10 - 10 –$$10^{-5}\;{\mathrm{eV}}$$ 10 - 5 eV . The effect of capture, known in QED as relating to gamma-quanta, is extended in axion electrodynamics to include X-ray photons with the result that a specially polarized part of the heat radiation from the surface is canalized along the magnetic field. Besides, we find that in the regime in which the dominance takes place, the running QED coupling depends on the field strength and the modified Coulomb potential is of Yukawa-type in the direction perpendicular to the magnetic field at distances much smaller than the axion Compton wavelength, while along the field it follows approximately the Coulomb law at any length scale. Despite the Coulomb singularity manifested in the latter case, we argue that the ground-state energy of a non-relativistic hydrogen atom placed in a strong magnetic field turns out to be bounded due to the nonrenormalizable feature of axion-electrodynamics.


Author(s):  
E. A. Mikhailov ◽  
M. V. Pashentsevay

Accretion discs surround different compact astrophysical objects such as black holes, neutron stars and white dwarfs. Also they are situated in systems of variable stars and near the galaxy center. Magnetic fields play an important role in evolution and hydrodynamics of the accretion discs: for example, they can describe such processes as the transition of the angular momentum. There are different approaches to explain the magnetic fields, but most interesting of them are connected with dynamo generation. As for disc, it is quite useful to take no-$z$ approximation which has been developed for galactic discs to solve the dynamo equations. It takes into account that the disc is quite thin, and we can solve the equations only for two plane components of the field. Here we describe the time dependence of the magnetic field for different distances from the center of the disc. Also we compare the results with another approaches which take into account more complicated field structure.


2020 ◽  
Vol 65 (3) ◽  
pp. 187
Author(s):  
M. Diachenko ◽  
O. Novak ◽  
R. Kholodov ◽  
A. Fomina

The process of the e−e+ pair photoproduction in a strong magnetic field through the polarization cascade (the creation of an e−e+ pair from a single photon and its subsequent annihilation to a single photon) has been considered. The kinematics of the process is analyzed, and the expression for the general amplitude is obtained. A radiation correction to the process of pair creation at the lowest Landau levels by a single photon is found in the case where the energy of this photon is close to the threshold value. A comparison with the process of e−e+ pair production by one photon is made.


2019 ◽  
Vol 1 (2) ◽  
pp. 193-207 ◽  
Author(s):  
Viktor V. Dodonov ◽  
Matheus B. Horovits

We consider a quantum charged particle moving in the x y plane under the action of a time-dependent magnetic field described by means of the linear vector potential of the form A = B ( t ) − y ( 1 + β ) , x ( 1 − β ) / 2 . Such potentials with β ≠ 0 exist inside infinite solenoids with non-circular cross sections. The systems with different values of β are not equivalent for nonstationary magnetic fields or time-dependent parameters β ( t ) , due to different structures of induced electric fields. Using the approximation of the stepwise variations of parameters, we obtain explicit formulas describing the change of the mean energy and magnetic moment. The generation of squeezing with respect to the relative and guiding center coordinates is also studied. The change of magnetic moment can be twice bigger for the Landau gauge than for the circular gauge, and this change can happen without any change of the angular momentum. A strong amplification of the magnetic moment can happen even for rapidly decreasing magnetic fields.


Author(s):  
L.J Silvers

Magnetic fields are known to reside in many astrophysical objects and are now believed to be crucially important for the creation of phenomena on a wide variety of scales. However, the role of the magnetic field in the bodies that we observe has not always been clear. In certain situations, the importance of a magnetic field has been overlooked on the grounds that the large-scale magnetic field was believed to be too weak to play an important role in the dynamics. In this article I discuss some of the recent developments concerning magnetic fields in stars, planets and accretion discs. I choose to emphasize some of the situations where it has been suggested that weak magnetic fields may play a more significant role than previously thought. At the end of the article, I list some of the questions to be answered in the future.


2018 ◽  
Vol 33 (21) ◽  
pp. 1850128
Author(s):  
D. M. Gitman ◽  
M. S. Meireles ◽  
A. D. Levin ◽  
A. A. Shishmarev ◽  
R. A. Castro

In this paper, we consider two examples of an entanglement in two-qubit systems and an example of entanglement in quantum field theory (QFT). In the beginning, we study the entanglement of two spin states by a magnetic field. A nonzero entanglement appears for interacting spins. When the coupling between the spins is constant, we study the entanglement by several types of time-dependent magnetic fields. In the case of a constant difference between [Formula: see text] components of magnetic fields acting on each spin, we find several time-dependent coupling functions [Formula: see text] that also allow us to analyze analytically and numerically the entanglement measure. Considering two photons moving in an electron medium, we demonstrate that they can be entangled in a controlled way by applying an external magnetic field. The magnetic field affecting electrons of the medium affects photons and, thus, causes an entanglement of the photon beams. The third example is related to the effect of production of electron–positron pairs from the vacuum by a strong external electric field. Here, we have used a general nonperturbative expression for the density operator of the system under consideration. Applying a reduction procedure to this density operator, we construct mixed states of electron and positron subsystems. Calculating the von Neumann entropy of such states, we obtain the loss of information due to the reduction and, at the same time, the entanglement measure of electron and positron subsystems. This entanglement can be considered as an example of an entanglement in QFT.


1992 ◽  
Vol 10 (2) ◽  
pp. 110-112
Author(s):  
K. D. Cole

AbstractAn apparent connection is reported between the magnetic field strengths inside an electron, in newly born pulsars, and the sun. It is argued that the upper limit to the strength of magnetic field which seems to exist is that which would permit emission of a photon at the non-relativistic electron gyrofrequency, with energy of the order of the electron rest mass. The strongest magnetic fields at the surface of polar regions of pulsars conform to this. By equating approximately the rest mass of an electron to its magnetic energy, the same magnetic field is found inside the electron. It is proposed that magnetic field building ‘blocks’ called M-particles are formed by a variant of the electron-positron spin-zero annihilation. The particles become as tightly stacked as possible to form the macroscopic magnetic field of the newly born pulsar. The sun’s present magnetic moment is described by a pulsar-sized object at its centre, with the maximum packing of M-particles. The hypothesis may have a bearing on the formation of magnetic fields in celestial bodies, and on the secular variation of the magnetic fields of the sun and the Earth.


Sign in / Sign up

Export Citation Format

Share Document