scholarly journals MULTIDIMENSIONAL GLOBAL MONOPOLE IN PRESENCE OF ELECTROMAGNETIC FIELD

2005 ◽  
Vol 20 (05) ◽  
pp. 993-999 ◽  
Author(s):  
F. RAHAMAN ◽  
P. GHOSH ◽  
M. KALAM ◽  
S. MANDAL

We study the gravitational properties of a global monopole in (D=d+2)-dimensional space–time in the presence of electromagnetic field.

2004 ◽  
Vol 19 (29) ◽  
pp. 5043-5050 ◽  
Author(s):  
YONGGE MA ◽  
JUN WU

A free test particle in five-dimensional Kaluza–Klein space–time will show its electricity in the reduced four-dimensional space–time when it moves along the fifth dimension. In the light of this observation, we study the coupling of a five-dimensional dust field with the Kaluza–Klein gravity. It turns out that the dust field can curve the five-dimensional space–time in such a way that it provides exactly the source of the electromagnetic field in the four-dimensional space–time after the dimensional reduction.


1989 ◽  
Vol 04 (10) ◽  
pp. 2627-2652 ◽  
Author(s):  
V.V. NESTERENKO

The classical and quantum dynamics of an open bosonic string propagating in the D-dimensional space-time in the presence of a background electromagnetic field is investigated. An important point in this consideration is the use of the generalized light-like gauge. There are considered the two types of strings: the neutral strings with charges at their ends obeying the condition q1+q2=0 and the charged strings having a net charge q1+q2≠0. The consistency of the theory demands that the background electric field does not exceed its critical value. The distance between the mass levels of the neutral open string decreases (1−e2) times in comparison with the free string where e is the dimensionless strength of the electric field. The magnetic field does not affect this distance. It is shown that at a classical level, the squared mass of the neutral open string has a tachyonic contribution due to the motion of the string as a whole in transverse directions. The tachyonic term disappears if one considers, instead of M2, the string energy in a special reference frame where the projection of the total canonical momentum of the string onto the electric field vanishes. The contributions due to zero point fluctuations to the energy spectrum of the neutral string and to the Virasoro operators in the theory of charged string are found. It is shown that the constraint on the strength of an external electric field is absent when the open bosonic string is placed in an external electromagnetic field of a special configuration. In the case of four-dimensional space-time, it corresponds to the electric and magnetic fields which are equal and perpendicular to each other (isotropic configuration). The external electromagnetic field does not act on the fermionic variables of the spinning string.


2000 ◽  
Vol 15 (08) ◽  
pp. 1235-1243 ◽  
Author(s):  
CHRISTOPHER KOHLER

A modification of Kaluza–Klein theory is proposed in which, as a result of a symmetry breaking, five-dimensional space–time is partially parallelized implying the appearance of torsion fields. A naturally chosen action functional leads to the Einstein–Cartan–Maxwell theory where the electromagnetic field strength is represented by the fifth component of the torsion two-form. Incorporation of a scalar field reveals that four-dimensional space–time torsion is not induced by the scalar field.


2019 ◽  
Author(s):  
Vitaly Kuyukov

Many approaches to quantum gravity consider the revision of the space-time geometry and the structure of elementary particles. One of the main candidates is string theory. It is possible that this theory will be able to describe the problem of hierarchy, provided that there is an appropriate Calabi-Yau geometry. In this paper we will proceed from the traditional view on the structure of elementary particles in the usual four-dimensional space-time. The only condition is that quarks and leptons should have a common emerging structure. When a new formula for the mass of the hierarchy is obtained, this structure arises from topological quantum theory and a suitable choice of dimensional units.


Sign in / Sign up

Export Citation Format

Share Document