BRANE SOLUTIONS WITH A QUADRATIC POTENTIAL IN STRING FRAME

2006 ◽  
Vol 21 (28n29) ◽  
pp. 5823-5831
Author(s):  
JAE-HYUK OH ◽  
YONGSUNG YOON

We have examined brane world solutions for the low energy effective string gravity action coupled with a quadratic dilaton potential in string frame. For a negative bulk cosmological constant, static 3-brane solutions exist. Their properties are analyzed depending on the quadratic potential parameters. It is found that a brane solution in a curved bulk space in Einstein frame corresponds to a dilaton solution in flat space in string frame.

2006 ◽  
Vol 15 (06) ◽  
pp. 895-903
Author(s):  
SEN HU ◽  
JING-RONG WANG

We consider a brane-world of co-dimension one without reflection symmetry. Through it, we give a possible explanation of the great discrepancy between the vacuum energy and the observed cosmological constant without contradiction to the knowledge we have about our Universe. We also show the gravity observed will be standard four-dimensional gravity as long as the discrepancy of the bulk cosmological constant at different sides of the brane is small enough.


2005 ◽  
Vol 20 (10) ◽  
pp. 2157-2168
Author(s):  
ZHE CHANG ◽  
SHAO-XIA CHEN ◽  
HAI-BAO WEN ◽  
XIN-BING HUANG

We discuss the vacuum energy density and the cosmological constant of dS5 brane-world with a dilaton field. It is shown that a stable AdS4 brane can be constructed and gravity localization can be realized. An explicit relation between the dS bulk cosmological constant and the brane cosmological constant is obtained. The discrete mass spectrum of the massive scalar field in the AdS4 brane is used to acquire the relationship between the brane cosmological constant and the vacuum energy density. The vacuum energy density in the brane gotten by this method is in agreement with astronomical observations.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yiming Chen ◽  
Victor Gorbenko ◽  
Juan Maldacena

Abstract We consider two dimensional CFT states that are produced by a gravitational path integral.As a first case, we consider a state produced by Euclidean AdS2 evolution followed by flat space evolution. We use the fine grained entropy formula to explore the nature of the state. We find that the naive hyperbolic space geometry leads to a paradox. This is solved if we include a geometry that connects the bra with the ket, a bra-ket wormhole. The semiclassical Lorentzian interpretation leads to CFT state entangled with an expanding and collapsing Friedmann cosmology.As a second case, we consider a state produced by Lorentzian dS2 evolution, again followed by flat space evolution. The most naive geometry also leads to a similar paradox. We explore several possible bra-ket wormholes. The most obvious one leads to a badly divergent temperature. The most promising one also leads to a divergent temperature but by making a projection onto low energy states we find that it has features that look similar to the previous Euclidean case. In particular, the maximum entropy of an interval in the future is set by the de Sitter entropy.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Ivano Basile ◽  
Stefano Lanza

Abstract We study de Sitter configurations in ten-dimensional string models where supersymmetry is either absent or broken at the string scale. To this end, we derive expressions for the cosmological constant in general warped flux compactifications with localized sources, which yield no-go theorems that extend previous works on supersymmetric cases. We frame our results within a dimensional reduction and connect them to a number of Swampland conjectures, corroborating them further in the absence of supersymmetry. Furthermore, we construct a top-down string embedding of de Sitter brane-world cosmologies within unstable anti-de Sitter landscapes, providing a concrete realization of a recently revisited proposal.


2020 ◽  
Vol 17 (05) ◽  
pp. 2050075
Author(s):  
Nasr Ahmed ◽  
Kazuharu Bamba ◽  
F. Salama

In this paper, we study the possibility of obtaining a stable flat dark energy-dominated universe in a good agreement with observations in the framework of Swiss-cheese brane-world cosmology. Two different brane-world cosmologies with black strings have been introduced for any cosmological constant [Formula: see text] using two empirical forms of the scale factor. In both models, we have performed a fine-tuning between the brane tension and the cosmological constant so that the Equation of state (EoS) parameter [Formula: see text] for the current epoch, where the redshift [Formula: see text]. We then used these fine–tuned values to calculate and plot all parameters and energy conditions. The deceleration–acceleration cosmic transition is allowed in both models, and the jerk parameter [Formula: see text] at late-times. Both solutions predict a future dark energy-dominated universe in which [Formula: see text] with no crossing to the phantom divide line. While the pressure in the first solution is always negative, the second solution predicts a better behavior of cosmic pressure where the pressure is negative only in the late-time accelerating era but positive in the early-time decelerating era. Such a positive-to-negative transition in the evolution of pressure helps to explain the cosmic deceleration–acceleration transition. Since black strings have been proved to be unstable by some authors, this instability can actually reflect doubts on the stability of cosmological models with black strings (Swiss-cheese type brane-worlds cosmological models). For this reason, we have carefully investigated the stability through energy conditions and sound speed. Because of the presence of quadratic energy terms in Swiss-cheese type brane-world cosmology, we have tested the new nonlinear energy conditions in addition to the classical energy conditions. We have also found that a negative tension brane is not allowed in both models of the current work as the energy density will no longer be well defined.


2001 ◽  
Vol 597 (1-3) ◽  
pp. 263-278 ◽  
Author(s):  
S.P. de Alwis

2003 ◽  
Vol 18 (supp01) ◽  
pp. 329-339
Author(s):  
Antonios Papazoglou

In this talk we discuss the scenario of multigravity according to which the gravity we observe in intermediate scales (1 mm < r < 1026 cm ) is mediated by both a massless graviton and one or more of ultralight spin-2 state. We present how this can be realized in a five dimensional brane-world theory with flat branes and the complications associated with the extra polarizations of the massive gravitons (van Dam-Veltman-Zakharov discontinuity) and the ghost radions corresponding to the fluctuations of the negative tension branes present in these models. We then show how we can construct models of AdS4 branes instead with exclusively positive tension and demonstrate how the van Dam-Veltman-Zakharov no-go theorem can be circumvented in curved space. These models, although they are consistent, face phenomenological problems related to the presence of a remnant negative cosmological constant on the branes. We finally present how we can obtain the same constructions in six dimensions with flat positive tensions branes only, in a manner that they are both theoretically consistent and phenomenologically acceptable. The latter come in two copies each and offer the first problem-free realization of the multigravity scenario.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rashid Alawadhi ◽  
David S. Berman ◽  
Bill Spence

Abstract We study a host of spacetimes where the Weyl curvature may be expressed algebraically in terms of an Abelian field strength. These include Type D spacetimes in four and higher dimensions which obey a simple quadratic relation between the field strength and the Weyl tensor, following the Weyl spinor double copy relation. However, we diverge from the usual double copy paradigm by taking the gauge fields to be in the curved spacetime as opposed to an auxiliary flat space.We show how for Gibbons-Hawking spacetimes with more than two centres a generalisation of the Weyl doubling formula is needed by including a derivative-dependent expression which is linear in the Abelian field strength. We also find a type of twisted doubling formula in a case of a manifold with Spin(7) holonomy in eight dimensions.For Einstein Maxwell theories where there is an independent gauge field defined on spacetime, we investigate how the gauge fields determine the Weyl spacetime curvature via a doubling formula. We first show that this occurs for the Reissner-Nordström metric in any dimension, and that this generalises to the electrically-charged Born-Infeld solutions. Finally, we consider brane systems in supergravity, showing that a similar doubling formula applies. This Weyl formula is based on the field strength of the p-form potential that minimally couples to the brane and the brane world volume Killing vectors.


Sign in / Sign up

Export Citation Format

Share Document