scholarly journals GREEN FUNCTIONS AND NONLINEAR SYSTEMS: SHORT TIME EXPANSION

2008 ◽  
Vol 23 (02) ◽  
pp. 299-308 ◽  
Author(s):  
MARCO FRASCA

We show that Green function methods can be straightforwardly applied to nonlinear equations appearing as the leading order of a short time expansion. Higher-order corrections can be then computed giving a satisfactory agreement with numerical results. The relevance of these results relies on the possibility of fully exploiting a gradient expansion in both classical and quantum field theory granting the existence of a strong coupling expansion. Having a Green function in this regime in quantum field theory amounts to obtain the corresponding spectrum of the theory.

2021 ◽  
pp. 237-252
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

We present a simple form of the Wightman axioms in a four-dimensional Minkowski space-time which are supposed to define a physically interesting interacting quantum field theory. Two important consequences follow from these axioms. The first is the invariance under CPT which implies, in particular, the equality of masses and lifetimes for particles and anti-particles. The second is the connection between spin and statistics. We give examples of interacting field theories and develop the perturbation expansion for Green functions. We derive the Feynman rules, both in configuration and in momentum space, for some simple interacting theories. The rules are unambiguous and allow, in principle, to compute any Green function at any order in perturbation.


2021 ◽  
pp. 304-328
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

Loop diagrams often yield ultraviolet divergent integrals. We introduce the concept of one-particle irreducible diagrams and develop the power counting argument which makes possible the classification of quantum field theories into non-renormalisable, renormalisable and super-renormalisable. We describe some regularisation schemes with particular emphasis on dimensional regularisation. The renormalisation programme is described at one loop order for φ‎4 and QED. We argue, without presenting the detailed proof, that the programme can be extended to any finite order in the perturbation expansion for every renormalisable (or super-renormalisable) quantum field theory. We derive the equation of the renormalisation group and explain how it can be used in order to study the asymptotic behaviour of Green functions. This makes it possible to introduce the concept of asymptotic freedom.


2006 ◽  
Vol 21 (12) ◽  
pp. 979-984 ◽  
Author(s):  
N. YONGRAM ◽  
E. B. MANOUKIAN ◽  
S. SIRANAN

Explicit field theory computations are carried out of the joint probabilities associated with spin correlations of μ- μ+ produced in e- e+ collision in the standard electroweak model to the leading order. The derived expressions are found to depend not only on the speed of the e- e+ pair but also on the underlying couplings. These expressions are unlike the ones obtained from simply combining the spins of the relevant particles which are of kinematical nature. It is remarkable that these explicit results obtained from quantum field theory show a clear violation of Bell's inequality.


Particles ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 385-410 ◽  
Author(s):  
Matthew Bernard ◽  
Vladislav A. Guskov ◽  
Mikhail G. Ivanov ◽  
Alexey E. Kalugin ◽  
Stanislav L. Ogarkov

Nonlocal quantum field theory (QFT) of one-component scalar field φ in D-dimensional Euclidean spacetime is considered. The generating functional (GF) of complete Green functions Z as a functional of external source j, coupling constant g and spatial measure d μ is studied. An expression for GF Z in terms of the abstract integral over the primary field φ is given. An expression for GF Z in terms of integrals over the primary field and separable Hilbert space (HS) is obtained by means of a separable expansion of the free theory inverse propagator L ^ over the separable HS basis. The classification of functional integration measures D φ is formulated, according to which trivial and two nontrivial versions of GF Z are obtained. Nontrivial versions of GF Z are expressed in terms of 1-norm and 0-norm, respectively. In the 1-norm case in terms of the original symbol for the product integral, the definition for the functional integration measure D φ over the primary field is suggested. In the 0-norm case, the definition and the meaning of 0-norm are given in terms of the replica-functional Taylor series. The definition of the 0-norm generator Ψ is suggested. Simple cases of sharp and smooth generators are considered. An alternative derivation of GF Z in terms of 0-norm is also given. All these definitions allow to calculate corresponding functional integrals over φ in quadratures. Expressions for GF Z in terms of integrals over the separable HS, aka the basis functions representation, with new integrands are obtained. For polynomial theories φ 2 n , n = 2 , 3 , 4 , … , and for the nonpolynomial theory sinh 4 φ , integrals over the separable HS in terms of a power series over the inverse coupling constant 1 / g for both norms (1-norm and 0-norm) are calculated. Thus, the strong coupling expansion in all theories considered is given. “Phase transitions” and critical values of model parameters are found numerically. A generalization of the theory to the case of the uncountable integral over HS is formulated—GF Z for an arbitrary QFT and the strong coupling expansion for the theory φ 4 are derived. Finally a comparison of two GFs Z , one on the continuous lattice of functions and one obtained using the Parseval–Plancherel identity, is given.


2019 ◽  
Vol 35 (05) ◽  
pp. 2050012
Author(s):  
Oleg O. Novikov

We consider the [Formula: see text]-symmetric quantum field theory on the noncommutative spacetime with angular twist and construct its pseudo-Hermitian interpretation. We explore the differences between internal and spatial parities in the context of the angular twist and for the latter we find new [Formula: see text]-symmetric interactions that are nontrivial only for the noncommutative spacetime. We reproduce the same formula for the leading order T-matrix of the equivalent Hermitian model as the one obtained earlier for the quantum field theory on the commutative spacetime. This formula implies that the leading order scattering amplitude preserves the symmetries of the noncommutative geometry if they are not broken in the non-Hermitian formulation.


1992 ◽  
Vol 07 (12) ◽  
pp. 2793-2808 ◽  
Author(s):  
YU. M. PIS'MAK

The Bethe–Salpeter equations for the n-particle irreducible Green functions in quantum field theory are derived. Their kernels are expressed in terms of the functional Legendre transforms, and n-particle irreducibility of the perturbation theory graphs for the kernel of the n-particle equation is proved. The method for obtaining the Faddeev–Yakubovski equations in quantum field theory is demonstrated for the three-particle case.


Sign in / Sign up

Export Citation Format

Share Document