scholarly journals A FRAMEWORK TO SIMULTANEOUSLY EXPLAIN TINY NEUTRINO MASS AND HUGE MISSING MASS PROBLEM OF THE UNIVERSE

2010 ◽  
Vol 25 (25) ◽  
pp. 2111-2120 ◽  
Author(s):  
YASAMAN FARZAN

A minimalistic scenario is developed to explain dark matter and tiny but nonzero neutrino masses. A new scalar called SLIM plays the role of the dark matter. Neutrinos achieve Majorana mass through a one-loop diagram. This scenario can be realized for both real and complex SLIM. Simultaneously explaining the neutrino mass and dark matter abundance constrains the scenario. In particular for real SLIM, an upper bound of a few MeV on the masses of the new particles and a lower bound on their coupling is obtained which make the scenario testable. The low energy scenario can be embedded within various SU (2)× U (1) symmetric models. A specific example is introduced and its phenomenological consequences are discussed.

Author(s):  
Xavier Calmet ◽  
Folkert Kuipers

In this essay, we show that quantum gravity and the spin-statistics theorem have very interesting consequences for dark matter candidates. Quantum gravity can lead to fifth force type interactions that lead to a lower bound on the masses of bosonic candidates. In the case of fermions, the spin-statistics theorem leads to a lower bound on fermion masses. For both bosonic and fermionic dark matter candidates, quantum gravity leads to a decay of dark matter particles. A comparison of their lifetime with the age of the universe leads to an upper bound on their masses. For singlet scalar dark matter fields, we find [Formula: see text].


2011 ◽  
Vol 26 (15) ◽  
pp. 2461-2485 ◽  
Author(s):  
Y. FARZAN

With the start of the LHC, interest in electroweak scale models for the neutrino mass has grown. In this paper, we review two specific models that simultaneously explain neutrino masses and provide a suitable DM candidate. We discuss the implications of these models for various observations and experiments including the LHC, Lepton Flavor Violating (LFV) rare decays, direct and indirect dark matter searches and kaon decay.


2011 ◽  
Vol 26 (06) ◽  
pp. 995-1009 ◽  
Author(s):  
H. HIGASHI ◽  
T. ISHIMA ◽  
D. SUEMATSU

Radiative neutrino mass models have interesting features, which make it possible to relate neutrino masses to the existence of dark matter. However, the explanation of the baryon number asymmetry in the universe seems to be generally difficult as long as we suppose leptogenesis based on the decay of thermal right-handed neutrinos. Since right-handed neutrinos are assumed to have masses of O(1) TeV in these models, they are too small to generate the sufficient lepton number asymmetry. Here we consider Affleck–Dine leptogenesis in a radiative neutrino mass model by using a famous flat direction LHu as an alternative possibility. The constraint on the reheating temperature could be weaker than the ordinary models. The model explains all the origin of the neutrino masses, the dark matter, and also the baryon number asymmetry in the universe.


2017 ◽  
Vol 32 (15) ◽  
pp. 1740007 ◽  
Author(s):  
P. S. Bhupal Dev ◽  
Rabindra N. Mohapatra ◽  
Yongchao Zhang

We show that in a class of non-supersymmetric left–right extensions of the Standard Model (SM), the lightest right-handed neutrino (RHN) can play the role of thermal Dark Matter (DM) in the Universe for a wide mass range from TeV to PeV. Our model is based on the gauge group [Formula: see text] in which a heavy copy of the SM fermions is introduced and the stability of the RHN DM is guaranteed by an automatic [Formula: see text] symmetry present in the leptonic sector. In such models, the active neutrino masses are obtained via the type-II seesaw mechanism. We find a lower bound on the RHN DM mass of order TeV from relic density constraints, as well as a unitarity upper bound in the multi-TeV to PeV scale, depending on the entropy dilution factor. The RHN DM could be made long-lived by soft-breaking of the [Formula: see text] symmetry and provides a concrete example of decaying DM interpretation of the PeV neutrinos observed at IceCube.


Author(s):  
Chitta Ranjan Das ◽  
Katri Huitu ◽  
Zhanibek Kurmanaliyev ◽  
Bakytbek Mauyey ◽  
Timo Kärkkäinen

The crucial phenomenological and experimental predictions for new physics are outlined, where the number of problems of the Standard Model (neutrino masses and oscillations, dark matter, baryon asymmetry of the Universe, leptonic CP-violation) could find their solutions. The analogies between the cosmological neutrino mass scale from the early universe data and laboratory probes are discussed and the search for new physics and phenomena.


2011 ◽  
Vol 26 (39) ◽  
pp. 2983-2996 ◽  
Author(s):  
DMITRY V. ZHURIDOV

Economical extensions of the Standard Model (SM), in which famous Davidson–Ibarra bound on the CP asymmetry relevant for leptogenesis may be significantly relaxed by the loop effects, comparing to predictions of the SM extended only by heavy right-handed neutrinos with hierarchical masses, are discussed. This leads to decreasing of the lower bound on the heavy neutrino masses and increasing of the upper bound on the light neutrino masses, which is testable. In addition, the considered theory may help to solve the dark matter problem.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Roberto A. Lineros ◽  
Mathias Pierre

Abstract We explore the connection between Dark Matter and neutrinos in a model inspired by radiative Type-II seessaw and scotogenic scenarios. In our model, we introduce new electroweakly charged states (scalars and a vector-like fermion) and impose a discrete ℤ2 symmetry. Neutrino masses are generated at the loop level and the lightest ℤ2-odd neutral particle is stable and it can play the role of a Dark Matter candidate. We perform a numerical analysis of the model showing that neutrino masses and flavour structure can be reproduced in addition to the correct dark matter density, with viable DM masses from 700 GeV to 30 TeV. We explore direct and indirect detection signatures and show interesting detection prospects by CTA, Darwin and KM3Net and highlight the complementarity between these observables.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lorenzo Calibbi ◽  
Francesco D’Eramo ◽  
Sam Junius ◽  
Laura Lopez-Honorez ◽  
Alberto Mariotti

Abstract Displaced vertices at colliders, arising from the production and decay of long-lived particles, probe dark matter candidates produced via freeze-in. If one assumes a standard cosmological history, these decays happen inside the detector only if the dark matter is very light because of the relic density constraint. Here, we argue how displaced events could very well point to freeze-in within a non-standard early universe history. Focusing on the cosmology of inflationary reheating, we explore the interplay between the reheating temperature and collider signatures for minimal freeze-in scenarios. Observing displaced events at the LHC would allow to set an upper bound on the reheating temperature and, in general, to gather indirect information on the early history of the universe.


Author(s):  
Martin Biehl ◽  
Takashi Ikegami ◽  
Daniel Polani

We present a first formal analysis of specific and complete local integration. Complete local integration was previously proposed as a criterion for detecting entities or wholes in distributed dynamical systems. Such entities in turn were conceived to form the basis of a theory of emergence of agents within dynamical systems. Here, we give a more thorough account of the underlying formal measures. The main contribution is the disintegration theorem which reveals a special role of completely locally integrated patterns (what we call ι-entities) within the trajectories they occur in. Apart from proving this theorem we introduce the disintegration hierarchy and its refinement-free version as a way to structure the patterns in a trajectory. Furthermore we construct the least upper bound and provide a candidate for the greatest lower bound of specific local integration. Finally, we calculate the i-entities in small example systems as a first sanity check and find that ι-entities largely fulfil simple expectations.


1985 ◽  
Vol 8 (4) ◽  
pp. 450-460 ◽  
Author(s):  
C. Castagnoli ◽  
P. Galeotti

Sign in / Sign up

Export Citation Format

Share Document