scholarly journals TWIN AND MIRROR SYMMETRIES FROM PRESYMMETRY

2011 ◽  
Vol 26 (18) ◽  
pp. 3051-3063 ◽  
Author(s):  
ERNESTO A. MATUTE

We argue that presymmetry, a hidden predynamical electroweak quark–lepton symmetry that explains the fractional charges and triplication of families, must be extended beyond the Standard Model as to have a residual presymmetry that embraces partner particles and includes the strong sector, so accounting for the twin or mirror partners proposed to alleviate the naturalness problem of the weak scale. It leads to the full duplication of fermions and gauge bosons of the Standard Model independently of the ultraviolet completion of the theory, even if the Higgs particle is discarded by experiment, which adds robustness to twin and mirror symmetries. The established connection is so strongly motivated that the search for twin or mirror matter becomes the possible test of presymmetry. If the physics beyond the Standard Model repairs its left–right asymmetry, mirror symmetry should be the one realized in nature.

2018 ◽  
Vol 46 ◽  
pp. 1860070
Author(s):  
Anna Lupato

In the Standard Model the electroweak coupling of the gauge bosons to leptons is independent of the lepton flavour. Semileptonic and rare decays of b quarks provide an ideal laboratory to test this property. Any violation of Lepton Flavour Universality would be a clear sign of physics beyond the Standard Model. In this work a review of the Lepton Flavour Universality tests performed using data collected by the LHCb experiment in 2011 and 2012 at a centre of mass energy of 7 and 8 TeV is presented.


2005 ◽  
Vol 20 (22) ◽  
pp. 5164-5173 ◽  
Author(s):  
BEATE HEINEMANN

Recent searches for physics beyond the Standard Model at high energy colliders are presented. The main focus is on searches for supersymmetry, extra dimensions and new gauge bosons. In all search analyses the data are found to agree well with the Standard Model background expectation and no evidence for contributions from physics beyond the Standard Model is found. The data are thus used to place limits on new physics scenarios.


1989 ◽  
Vol 04 (28) ◽  
pp. 2757-2766 ◽  
Author(s):  
THOMAS G. RIZZO

Although absent at the tree level in models with only doublet and singlet Higgs representations, the WZH coupling can be induced at the one-loop level. We examine the size of this induced coupling in the two Higgs doublet model due to fermion as well as Higgs/gauge boson loops. Such couplings could provide a new mechanism for charged Higgs production at colliders and are ‘backgrounds’ to new physics beyond the Standard Model. We find, however, that these couplings are very weak for all regions of the parameter space explored.


1995 ◽  
Vol 10 (07) ◽  
pp. 605-613 ◽  
Author(s):  
M. SHIFMAN

The value of αs (Mz) emerging from the so-called global fits based mainly on the data at the Z peak (and assuming the standard model) is three standard deviations higher than the one stemming from the low-energy phenomenology. The corresponding value of Λ QCD is very large, ~500 MeV, and is incompatible with crucial features of QCD. If persists, the discrepancy should be interpreted as due to contributions to the Z-quark-antiquark vertices which go beyond the standard model.


2019 ◽  
Vol 79 (9) ◽  
Author(s):  
Joachim Herrmann

Abstract A generalized theory of electroweak interaction is developed based on the underlying geometrical structure of the tangent bundle with symmetries arising from transformations of tangent vectors along the fiber axis at a fixed spacetime point given by the SO(3,1) group. Electroweak interaction beyond the standard model (SM) is described by the little groups $$ SU(2)\otimes E^{c}(2)$$SU(2)⊗Ec(2) ($$E^{c}(2)$$Ec(2) is the central extended Euclidian group) which includes the group $$SU(2)\otimes U(1)$$SU(2)⊗U(1) as a limit case. In addition to isospin and hypercharge, two additional quantum numbers arise which explain the existence of families in the SM. The connection coefficients yield the SM gauge potentials but also hypothetical gauge bosons and other hypothetical particles as a Higgs family as well as candidate Dark Matter particles are predicted. Several important consequences for the interaction between dark fermions, dark scalars or dark vector gauge bosons with each other and with SM Higgs and Z-bosons are described.


2008 ◽  
Vol 23 (24) ◽  
pp. 3849-3861 ◽  
Author(s):  
J.-F. GRIVAZ

Recent searches for physics beyond the Standard Model at high-energy colliders are reviewed, with emphasis on supersymmetry, additional space dimensions, extra gauge bosons, leptoquarks and model-independent searches. The results reported are based on data samples of up to 0.5 and 2.5 fb -1 collected at HERA and at the Tevatron, respectively.


2001 ◽  
Vol 16 (28) ◽  
pp. 4547-4565 ◽  
Author(s):  
YUE-LIANG WU ◽  
YU-FENG ZHOU

The measurement of sin 2β is discussed within and beyond the standard model. In the presence of new physics, the angle β extracted from the global fit (denoted by [Formula: see text]) and the one extracted from B→J/ψKS(denoted by βJ/ψ) are in general all different from the "true" angle β which is the weak phase of CKM matrix element [Formula: see text]. Possible new physics effects on the ratio [Formula: see text] is studied and parametrized in a most general form. It is shown that the ratio Rβmay provide a useful tool in probing new physics. The experimental value of Rβis obtained through an update of the global fit of the unitarity triangle with the latest data and found to be less than unity at 1σ level. The new physics effects on Rβfrom the models with minimum flavor violation (MFV) and the standard model with two-Higgs-doublet (S2HDM) are studied in detail. It is found that the MFV models seem to give a relative large value Rβ≥1. With the current data, this may indicate that this kind of new physics may be disfavored and alternative new physics with additional phases appears more relevant. As an illustration for models with additional phase beyond CKM phase, the S2HDM effects on Rβare studied and found to be easily coincide with the data due to the flavor changing neutral Higgs interaction.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Alexandre Carvunis ◽  
Diego Guadagnoli ◽  
Méril Reboud ◽  
Peter Stangl

Abstract We present a model of composite Dark Matter (DM), in which a new QCD-like confining “hypercolor” sector generates naturally stable hyperbaryons as DM candidates and at the same time provides mass to new weakly coupled gauge bosons H that serve as DM mediators, coupling the hyperbaryons to the Standard Model (SM) fermions. By an appropriate choice of the H gauge symmetry as a horizontal SU(2)h SM flavor symmetry, we show how the H gauge bosons can be identified with the horizontal gauge bosons recently put forward as an explanation for discrepancies in rare B-meson decays. We find that the mass scale of the H gauge bosons suggested by the DM phenomenology intriguingly agrees with the one needed to explain the rare B-decay discrepancies.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Diego Guadagnoli ◽  
Méril Reboud ◽  
Peter Stangl

Abstract The evidence of Dark Matter (DM) is one of the strongest observational arguments in favor of physics beyond the Standard Model. Despite expectations, a similar evidence has been lacking so far in collider searches, with the possible exception of B-physics discrepancies, a coherent set of persistent deviations in a homogeneous dataset consisting of b → c and b → s semi-leptonic transitions. We explore the question whether DM and the B discrepancies may have a common origin. We do so in the context of the so-called 4321 gauge model, a UV-complete and calculable setup that yields a U1 leptoquark, the by far most successful single mediator able to explain the B anomalies, along with other new gauge bosons, including a Z′. Adding to this setup a ‘minimal’ DM fermionic multiplet, consisting of a 4 under the 4321’s SU(4), we find the resulting model in natural agreement with the relic-density observation and with the most severe direct-detection bounds, in the sense that the parameter space selected by B physics is also the one favored by DM phenomenology. The DM candidate is a particle with a mass in the WIMP range, freeze-out dynamics includes a co-annihilator (the ‘rest’ of the 4 multiplet), and the most important gauge mediator in the DM sector is the Z′.


Author(s):  
Benedetta Belfatto ◽  
Revaz Beradze ◽  
Zurab Berezhiani

Abstract After the recent high precision determinations of $$V_{us}$$Vus and $$V_{ud}$$Vud, the first row of the CKM matrix shows more than $$4\sigma $$4σ deviation from unitarity. Two possible scenarios beyond the Standard Model can be investigated in order to fill the gap. If a 4th non-sequential quark $$b'$$b′ (a vector-like weak isosinglet) participates in the mixing, with $$\vert V_{ub'} \vert \sim 0.04$$|Vub′|∼0.04, then its mass should be no more than 6 TeV or so. A different solution can come from the introduction of the gauge horizontal family symmetry $$SU(3)_\ell $$SU(3)ℓ acting between the lepton families and spontaneously broken at the scale of about 6 TeV. Since the gauge bosons of this symmetry contribute to muon decay in interference with Standard Model, the Fermi constant is slightly smaller than the muon decay constant so that unitarity is recovered. Also the neutron lifetime problem, that is about $$4\sigma $$4σ discrepancy between the neutron lifetimes measured in beam and trap experiments, is discussed in the light of the these determinations of the CKM matrix elements.


Sign in / Sign up

Export Citation Format

Share Document