scholarly journals Tests of Lepton Flavour Universality at LHCb

2018 ◽  
Vol 46 ◽  
pp. 1860070
Author(s):  
Anna Lupato

In the Standard Model the electroweak coupling of the gauge bosons to leptons is independent of the lepton flavour. Semileptonic and rare decays of b quarks provide an ideal laboratory to test this property. Any violation of Lepton Flavour Universality would be a clear sign of physics beyond the Standard Model. In this work a review of the Lepton Flavour Universality tests performed using data collected by the LHCb experiment in 2011 and 2012 at a centre of mass energy of 7 and 8 TeV is presented.

2005 ◽  
Vol 20 (22) ◽  
pp. 5164-5173 ◽  
Author(s):  
BEATE HEINEMANN

Recent searches for physics beyond the Standard Model at high energy colliders are presented. The main focus is on searches for supersymmetry, extra dimensions and new gauge bosons. In all search analyses the data are found to agree well with the Standard Model background expectation and no evidence for contributions from physics beyond the Standard Model is found. The data are thus used to place limits on new physics scenarios.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Christoph Bobeth ◽  
Marzia Bordone ◽  
Nico Gubernari ◽  
Martin Jung ◽  
Danny van Dyk

AbstractWe analyze in detail the angular distributions in $${\bar{B}}\rightarrow D^*\ell {{\bar{\nu }}}$$ B ¯ → D ∗ ℓ ν ¯ decays, with a focus on lepton-flavour non-universality. We investigate the minimal number of angular observables that fully describes current and upcoming datasets, and explore their sensitivity to physics beyond the Standard Model (BSM) in the most general weak effective theory. We apply our findings to the current datasets, extract the non-redundant set of angular observables from the data, and compare to precise SM predictions that include lepton-flavour universality violating mass effects. Our analysis shows that the number of independent angular observables that can be inferred from current experimental data is limited to only four. These are insufficient to extract the full set of relevant BSM parameters. We uncover a $$\sim 4\sigma $$ ∼ 4 σ tension between data and predictions that is hidden in the redundant presentation of the Belle 2018 data on $${\bar{B}}\rightarrow D^*\ell {{\bar{\nu }}}$$ B ¯ → D ∗ ℓ ν ¯ decays. This tension specifically involves observables that probe $$e-\mu $$ e - μ lepton-flavour universality. However, we find inconsistencies in these data, which renders results based on it suspicious. Nevertheless, we discuss which generic BSM scenarios could explain the tension, in the case that the inconsistencies do not affect the data materially. Our findings highlight that $$e-\mu $$ e - μ non-universality in the SM, introduced by the finite muon mass, is already significant in a subset of angular observables with respect to the experimental precision.


2018 ◽  
Vol 182 ◽  
pp. 02096
Author(s):  
James Pinfold

MoEDAL is a pioneering experiment designed to search for highly ionizing messengers of new physics such as magnetic monopoles or massive (pseudo-)stable charged particles, that are predicted to exist in a plethora of models beyond the Standard Model. It started data taking at the LHC at a centre-of-mass energy of 13 TeV, in 2015. MoEDAL’s ground breaking physics program defines a number of scenarios that yield potentially revolutionary insights into such foundational questions as: are there extra dimensions or new symmetries; what is the mechanism for the generation of mass; does magnetic charge exist; and what is the nature of dark matter. MoEDAL’s purpose is to meet such far-reaching challenges at the frontier of the field. We will present an overview of the MoEDAL detector, including the planned MAPP subdetector, as well as MoEDAL’s physics program. The concluding section highlights our first physics results on Magnetic Monopole production, that are the world’s best for Monopoles with multiple magnetic charge.


2015 ◽  
Vol 30 (31) ◽  
pp. 1546009 ◽  
Author(s):  
Konstantinos Kousouris

Jet observables have been exploited extensively during the LHC Run 1 to search for physics beyond the Standard Model. In this article, the most recent results from the ATLAS and CMS collaborations are summarized. Data from proton–proton collisions at 7 and 8 TeV center-of-mass energy have been analyzed to study monojet, dijet, and multijet final states, searching for a variety of new physics signals that include colored resonances, contact interactions, extra dimensions, and supersymmetric particles. The exhaustive searches with jets in Run 1 did not reveal any signal, and the results were used to put stringent exclusion limits on the new physics models.


2019 ◽  
Vol 79 (9) ◽  
Author(s):  
Joachim Herrmann

Abstract A generalized theory of electroweak interaction is developed based on the underlying geometrical structure of the tangent bundle with symmetries arising from transformations of tangent vectors along the fiber axis at a fixed spacetime point given by the SO(3,1) group. Electroweak interaction beyond the standard model (SM) is described by the little groups $$ SU(2)\otimes E^{c}(2)$$SU(2)⊗Ec(2) ($$E^{c}(2)$$Ec(2) is the central extended Euclidian group) which includes the group $$SU(2)\otimes U(1)$$SU(2)⊗U(1) as a limit case. In addition to isospin and hypercharge, two additional quantum numbers arise which explain the existence of families in the SM. The connection coefficients yield the SM gauge potentials but also hypothetical gauge bosons and other hypothetical particles as a Higgs family as well as candidate Dark Matter particles are predicted. Several important consequences for the interaction between dark fermions, dark scalars or dark vector gauge bosons with each other and with SM Higgs and Z-bosons are described.


2008 ◽  
Vol 23 (24) ◽  
pp. 3849-3861 ◽  
Author(s):  
J.-F. GRIVAZ

Recent searches for physics beyond the Standard Model at high-energy colliders are reviewed, with emphasis on supersymmetry, additional space dimensions, extra gauge bosons, leptoquarks and model-independent searches. The results reported are based on data samples of up to 0.5 and 2.5 fb -1 collected at HERA and at the Tevatron, respectively.


Author(s):  
Ann-Kathrin Perrevoort

The upcoming Mu3e experiment aims to search for the lepton flavour violating decay \boldsymbol{\muposeeemath} with an unprecedented final sensitivity of one signal decay in \boldsymbol{\num{e16}} observed muon decays by making use of an innovative experimental design based on novel ultra-thin silicon pixel sensors. In a first phase, the experiment is operated at an existing muon beam line with rates of up to \boldsymbol{\num{e8}} muons per second. Detailed simulation studies confirm the feasibility of background-free operation and project single event sensitivities in the order of \boldsymbol{\num{e-15}} for signal decays modelled in an effective field theory approach. The precise tracking of the decay electrons and large geometric and momentum acceptance of Mu3e enable searches for physics beyond the Standard Model in further signatures. Examples of which are searches for lepton flavour violating two-body decays of the muon into an electron and an undetected boson as well as for electron-positron resonances in \boldsymbol{\muposeeenunumath} which could result for instance from a dark photon decay. The Mu3e experiment is expected to be competitive in all of these channels already in phase I.


2011 ◽  
Vol 26 (18) ◽  
pp. 3051-3063 ◽  
Author(s):  
ERNESTO A. MATUTE

We argue that presymmetry, a hidden predynamical electroweak quark–lepton symmetry that explains the fractional charges and triplication of families, must be extended beyond the Standard Model as to have a residual presymmetry that embraces partner particles and includes the strong sector, so accounting for the twin or mirror partners proposed to alleviate the naturalness problem of the weak scale. It leads to the full duplication of fermions and gauge bosons of the Standard Model independently of the ultraviolet completion of the theory, even if the Higgs particle is discarded by experiment, which adds robustness to twin and mirror symmetries. The established connection is so strongly motivated that the search for twin or mirror matter becomes the possible test of presymmetry. If the physics beyond the Standard Model repairs its left–right asymmetry, mirror symmetry should be the one realized in nature.


Universe ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Priyanka ◽  
Kirti Ranjan ◽  
Ashutosh Bhardwaj

An overview of recent results of single-top quark production at the LHC using data collected with the CMS detector is presented. The CMS experiment has measured the electroweak production of the top quark in three production modes, namely t-channel, tW-channel, and s-channel. Measurements of the rare processes involving a single-top quark with a Z boson and a single-top quark with a γ are also discussed. All measurements are in agreement with the standard model prediction, and no sign of physics beyond the standard model is observed.


Sign in / Sign up

Export Citation Format

Share Document