scholarly journals THE EFFECT OF ELECTROMAGNETIC PROPERTIES OF NEUTRINOS ON THE PHOTON–NEUTRINO DECOUPLING TEMPERATURE

2012 ◽  
Vol 27 (32) ◽  
pp. 1250187
Author(s):  
S. C. İNAN ◽  
M. KÖKSAL

We examine the impact of electromagnetic properties of neutrinos on the annihilation of relic neutrinos with ultrahigh energy cosmic neutrinos for the [Formula: see text] process. For this process, photon–neutrino decoupling temperature is calculated via effective Lagrangian model beyond the standard model. We find that photon–neutrino decoupling temperature can be importantly reduced below the QCD phase transition with the model independent analysis defining electromagnetic properties of neutrinos.

Author(s):  
Robert Fleischer ◽  
Ruben Jaarsma ◽  
Gabriël Koole

Abstract Data in B-meson decays indicate violations of lepton flavour universality, thereby raising the question about such phenomena in the charm sector. We perform a model-independent analysis of NP contributions in (semi)-leptonic decays of $$D_{(s)}$$D(s) mesons which originate from $$c \rightarrow d \bar{{\ell }} \nu _l$$c→dℓ¯νl and $$c \rightarrow s \bar{{\ell }} \nu _{\ell }$$c→sℓ¯νℓ charged-current interactions. Starting from the most general low-energy effective Hamiltonian containing four-fermion operators and the corresponding short-distance coefficients, we explore the impact of new (pseudo)-scalar, vector and tensor operators and constrain their effects through the interplay with current data. We pay special attention to the elements $$|V_{cd}|$$|Vcd| and $$|V_{cs}|$$|Vcs| of the Cabibbo–Kobayashi–Maskawa matrix and extract them from the $$D_{(s)}$$D(s) decays in the presence of possible NP decay contributions, comparing them with determinations utilizing unitarity. We find a picture in agreement with the Standard Model within the current uncertainties. Using the results from our analysis, we make also predictions for leptonic $$D_{(s)}^+ \rightarrow e^+ \nu _e$$D(s)+→e+νe modes which could be hugely enhanced with respect to their tiny Standard Model branching ratios. It will be interesting to apply our strategy at the future high-precision frontier.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Jihyun Bhom ◽  
Marcin Chrzaszcz ◽  
Farvah Mahmoudi ◽  
Markus T. Prim ◽  
Pat Scott ◽  
...  

AbstractThe search for flavour-changing neutral current effects in B-meson decays is a powerful probe of physics beyond the Standard Model. Deviations from SM behaviour are often quantified by extracting the preferred values of the Wilson coefficients of an operator product expansion. We use the module of the package to perform a simultaneous global fit of the Wilson coefficients $$C_7$$ C 7 , $$C_9$$ C 9 , and $$C_{10}$$ C 10 using a combination of all current data on $$b{\rightarrow }s\mu ^{+}\mu ^{-}$$ b → s μ + μ -  transitions. We further extend previous analyses by accounting for the correlated theoretical uncertainties at each point in the Wilson coefficient parameter space, rather than deriving the uncertainties from a Standard Model calculation. We find that the best fit deviates from the SM value with a significance of 6.6$$\sigma $$ σ . The largest deviation is associated with a vector coupling of muons to b and s quarks.


2017 ◽  
Vol 32 (27) ◽  
pp. 1730024 ◽  
Author(s):  
Emiliano Molinaro ◽  
Natascia Vignaroli

We review the current status of searches for new physics beyond the Standard Model in the diphoton channel at the LHC and estimate the reach with future collected data. We perform a model independent analysis based on an effective field theory approach and different production mechanisms. As an illustrative example, we apply our results to a scenario of minimal composite dynamics.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Aoife Bharucha ◽  
Diogo Boito ◽  
Cédric Méaux

Abstract In this paper we consider the decay D+ → π+ℓ+ℓ−, addressing in particular the resonance contributions as well as the relatively large contributions from the weak annihilation diagrams. For the weak annihilation diagrams we include known results from QCD factorisation at low q2 and at high q2, adapting the existing calculation for B decays in the Operator Product Expansion. The hadronic resonance contributions are obtained through a dispersion relation, modelling the spectral functions as towers of Regge-like resonances in each channel, as suggested by Shifman, imposing the partonic behaviour in the deep Euclidean. The parameters of the model are extracted using e+e− → (hadrons) and τ → (hadrons) + ντ data as well as the branching ratios for the resonant decays D+ → π+R(R → ℓ+ℓ−), with R = ρ, ω, and ϕ. We perform a thorough error analysis, and present our results for the Standard Model differential branching ratio as a function of q2. Focusing then on the observables FH and AFB, we consider the sensitivity of this channel to effects of physics beyond the Standard Model, both in a model independent way and for the case of leptoquarks.


2001 ◽  
Vol 16 (supp01b) ◽  
pp. 888-890
Author(s):  
◽  
BRUCE KNUTESON

We present a quasi-model-independent search for physics beyond the standard model. We define final states to be studied, and construct a rule that identifies a set of variables appropriate for any particular final state. A new algorithm ("Sleuth") searches for regions of excess in the space of those variables and quantifies the significance of any detected excess. After demonstrating the sensititvity of the method, we apply it to the semi-inclusive channel eμX collected in ≈108 pb -1 of [Formula: see text] collisions at [Formula: see text] at the DØ experiment at the Fermilab Tevatron. We find no evidence of new high pT physics in this sample.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
S. C. İnan ◽  
M. Köksal

We examine the effect of excited neutrinos on the annihilation of relic neutrinos with ultrahigh energy cosmic neutrinos for theνν¯→γγprocess. The contributions of the excited neutrinos to the neutrino-photon decoupling temperature are calculated. We see that photon-neutrino decoupling temperature can be significantly reduced below the obtained value of the Standard Model with the impact of excited neutrinos.


2001 ◽  
Vol 16 (supp01a) ◽  
pp. 92-103 ◽  
Author(s):  
R. L. Culbertson

The search for physics beyond the Standard Model includes Technicolor particles, Higgs Bosons, compositeness, many variations of Supersymmetry, large extra dimensions, model-independent searches for anomalies, and other topics. This article reports a subset of these ongoing searches at the high-energy colliders, Tevatron, HERA and LEP.


2015 ◽  
Vol 30 (16) ◽  
pp. 1550087
Author(s):  
V. Skalozub ◽  
I. Kucher

The integral observables for model-independent detections of Abelian Z′ gauge boson in e+e- → μ+μ-(τ+τ-) process with unpolarized beams at the ILC energies are proposed. They are based on the differential cross-section of deviations from the standard model predictions calculated with a low energy effective Lagrangian and taking into consideration the relations between the Z′ couplings to the fermions derived already. Due to these relations, the cross-section exhibits angular distribution giving a possibility for introducing one- or two-parameter observables which effectively fit the mass mZ′, the axial-vector [Formula: see text] and the product of vector couplings vevμ(vevτ). A discovery reach for the Z′ is estimated for two of introduced observables. Determination of the basic Z′ model is discussed. Comparison with other results and approaches is given.


Sign in / Sign up

Export Citation Format

Share Document