scholarly journals Effects of quantum gravity on black holes

2014 ◽  
Vol 29 (26) ◽  
pp. 1430054 ◽  
Author(s):  
Deyou Chen ◽  
Houwen Wu ◽  
Haitang Yang ◽  
Shuzheng Yang

In this review, we discuss the effects of quantum gravity on black hole physics. After a brief review of the origin of the minimal observable length from various quantum gravity theories, we present the tunneling method. To incorporate quantum gravity effects, we modify the Klein–Gordon equation and Dirac equation by the modified fundamental commutation relations. Then we use the modified equations to discuss the tunneling radiation of scalar particles and fermions. The corrected Hawking temperatures are related to the quantum numbers of the emitted particles. Quantum gravity corrections slow down the increase of the temperatures. The remnants are observed as [Formula: see text]. The mass is quantized by the modified Wheeler–DeWitt equation and is proportional to n in quantum gravity regime. The thermodynamical property of the black hole is studied by the influence of quantum gravity effects.

2017 ◽  
Vol 26 (05) ◽  
pp. 1741018 ◽  
Author(s):  
Muhammad Rizwan ◽  
K. Saifullah

When quantum gravity effects, that are based on generalized uncertainty principle with a minimal measurable length, are incorporated into black hole physics the Klein–Gordon and Dirac equations get modified. Using these modified equations we investigate tunneling of scalar particles and fermions from event and acceleration horizons of accelerating and rotating black holes and obtain the modified Hawking temperature with quantum gravity effects. We see that Hawking temperature depends on black hole parameters as well as the quantum numbers of emitted fermions. The quantum corrections slow down black hole evaporation and leave a black hole remnant. This contradicts complete evaporation of a black hole which is presaged by the standard temperature formula for black holes. The modified Hawking temperatures presented here, in appropriate limits, are consistent with the previous results in the literature.


2018 ◽  
Vol 33 (12) ◽  
pp. 1850070 ◽  
Author(s):  
I. Ablu Meitei ◽  
T. Ibungochouba Singh ◽  
S. Gayatri Devi ◽  
N. Premeshwari Devi ◽  
K. Yugindro Singh

Tunneling of scalar particles across the event horizon of rotating BTZ black hole is investigated using the Generalized Uncertainty Principle to study the corrected Hawking temperature and entropy in the presence of quantum gravity effects. We have determined explicitly the various correction terms in the entropy of rotating BTZ black hole including the logarithmic term of the Bekenstein–Hawking entropy [Formula: see text], the inverse term of [Formula: see text] and terms with inverse powers of [Formula: see text], in terms of properties of the black hole and the emitted particles — mass, energy and angular momentum. In the presence of quantum gravity effects, for the emission of scalar particles, the Hawking radiation and thermodynamics of rotating BTZ black hole are observed to be related to the metric element, hence to the curvature of space–time.


2016 ◽  
Vol 55 (7) ◽  
pp. 3173-3180 ◽  
Author(s):  
Tianhu Cheng ◽  
Ruyi Ren ◽  
Deyou Chen ◽  
Zixiang Liu ◽  
Guopin Li

2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Zhonghua Li

In this paper, using Hamilton-Jacobi ansatz, we investigate scalar particle tunneling radiation in the Demianski-Newman spacetime. We get the effective temperature with influences of quantum gravity and compare this temperature with the original temperature of the Demianski-Newman black hole. We find that it is similar to the case of fermions; for scalar particles, the influence of quantum gravity will also slow down the increase of Hawking temperatures, which naturally leads to remnants left in the evaporation.


2016 ◽  
Vol 31 (07) ◽  
pp. 1650022 ◽  
Author(s):  
Zhongwen Feng ◽  
Xiaodan Zhu ◽  
Guoping Li ◽  
Weijing Fang ◽  
Xiaotao Zu

Incorporating the generalized uncertainty principle (GUP) into the tunneling mechanism, we have studied the tunneling radiation of the scalar particles and fermions from the five-dimensional Schwarzschild–Tangherlini black hole. The results showed that the GUP corrected temperatures do not only depend on the mass of ST black hole, but are also affected by the gravity effects correction [Formula: see text]. Besides, the [Formula: see text] slows down the Hawking temperature increasing and causes the existence of remnants in black hole evaporation.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Deyou Chen ◽  
Zhonghua Li

Hawking’s calculation is unable to predict the final stage of the black hole evaporation. When effects of quantum gravity are taken into account, there is a minimal observable length. In this paper, we investigate fermions’ tunnelling from the charged and rotating black strings. With the influence of the generalized uncertainty principle, the Hawking temperatures are not only determined by the rings, but also affected by the quantum numbers of the emitted fermions. Quantum gravity corrections slow down the increases of the temperatures, which naturally leads to remnants left in the evaporation.


2002 ◽  
Vol 11 (10) ◽  
pp. 1537-1540 ◽  
Author(s):  
SAMIR D. MATHUR

The entropy and information puzzles arising from black holes cannot be resolved if quantum gravity effects remain confined to a microscopic scale. We use concrete computations in nonperturbative string theory to argue for three kinds of nonlocal effects that operate over macroscopic distances. These effects arise when we make a bound state of a large number of branes, and occur at the correct scale to resolve the paradoxes associated with black holes.


2020 ◽  
Vol 35 (27) ◽  
pp. 2050225 ◽  
Author(s):  
Riasat Ali ◽  
Muhammad Asgher ◽  
M. F. Malik

This paper is devoted to the tunneling radiation and quantum gravity effect on tunneling radiation of neutral regular black hole in Rastall gravity. We analyzed the tunneling radiation and Hawking temperature of neutral regular black hole by applying the Hamilton-Jacobi ansatz phenomenon. Lagrangian wave equation have been investigated by generalized uncertainty principle (GUP), using the WKB-approximation and calculated the tunneling rate as well as temperature. Furthermore, we analyzed the temperature of this neutral regular black hole in the presence of gravity. The stability and instability of neutral regular black hole are also analyzed.


Sign in / Sign up

Export Citation Format

Share Document