Beam–beam effects of single ring and partial double ring scheme in CEPC

2016 ◽  
Vol 31 (33) ◽  
pp. 1644015 ◽  
Author(s):  
Yuan Zhang

After the Higgs discovery, it is believed that a circular [Formula: see text] collider could serve as a Higgs factory. The high energy physics community in China launched a study of a 50–100 km ring collider. A preliminary conceptual design report (Pre-CDR) has been published in early 2015. This report is based on a 54-km ring design. Some progress on beam–beam effect study after Pre-CDR is shown in the paper. We estimate the beamstrahlung lifetime using a pure strong–strong code as a comparison with the result obtained using a quasi-strong–strong method. The effect of parasitic crossing in the pretzel scheme is also estimated for the very first time. The feasibility of the main parameters for partial double ring scheme are evaluated from the point view of beam–beam interaction.

2018 ◽  
Vol 68 (1) ◽  
pp. 291-312 ◽  
Author(s):  
Celine Degrande ◽  
Valentin Hirschi ◽  
Olivier Mattelaer

The automation of one-loop amplitudes plays a key role in addressing several computational challenges for hadron collider phenomenology: They are needed for simulations including next-to-leading-order corrections, which can be large at hadron colliders. They also allow the exact computation of loop-induced processes. A high degree of automation has now been achieved in public codes that do not require expert knowledge and can be widely used in the high-energy physics community. In this article, we review many of the methods and tools used for the different steps of automated one-loop amplitude calculations: renormalization of the Lagrangian, derivation and evaluation of the amplitude, its decomposition onto a basis of scalar integrals and their subsequent evaluation, as well as computation of the rational terms.


1995 ◽  
Vol 06 (04) ◽  
pp. 531-540 ◽  
Author(s):  
D. PERRET-GALLIX

Complete Feynman diagram automatic computation systems are now coming of age after many years of development. They are made available to the high energy physics community through user-friendly interfaces. Theorists and experimentalists can benefit from these powerful packages for speeding up time consuming calculations and for preparing event generators. The general architecture of these packages is presented and the current development of the one-loop diagrams extension is discussed. A rapid description of the prominent packages and tools is then proposed. Finally, the necessity for defining a standardization scheme is heavily stressed for the benefit of developers and users.


2020 ◽  
Vol 35 (23) ◽  
pp. 2050131
Author(s):  
Mohd Adli Md Ali ◽  
Nu’man Badrud’din ◽  
Hafidzul Abdullah ◽  
Faiz Kemi

Recently, the concept of weakly supervised learning has gained popularity in the high-energy physics community due to its ability to learn even with a noisy and impure dataset. This method is valuable in the quest to discover the elusive beyond Standard Model (BSM) particle. Nevertheless, the weakly supervised learning method still requires a learning sample that describes the features of the BSM particle truthfully to the classification model. Even with the various theoretical framework such as supersymmetry and the quantum black hole, creating a BSM sample is not a trivial task since the exact feature of the particle is unknown. Due to these difficulties, we propose an alternative classifier type called the one-class classification (OCC). OCC algorithms require only background or noise samples in its training dataset, which is already abundant in the high-energy physics community. The algorithm will flag any sample that does not fit the background feature as an abnormality. In this paper, we introduce two new algorithms called EHRA and C-EHRA, which use machine learning regression and clustering to detect anomalies in samples. We tested the algorithms’ capability to create distinct anomalous patterns in the presence of BSM samples and also compare their classification output metrics to the Isolation Forest (ISF), a well-known anomaly detection algorithm. Five Monte Carlo supersymmetry datasets with the signal to noise ratio equal to 1, 0.1, 0.01, 0.001, and 0.0001 were used to test EHRA, C-EHRA and ISF algorithm. In our study, we found that the EHRA with an artificial neural network regression has the highest ROC-AUC score at 0.7882 for the balanced dataset, while the C-EHRA has the highest precision-sensitivity score for the majority of the imbalanced datasets. These findings highlight the potential use of the EHRA, C-EHRA, and other OCC algorithms in the quest to discover BSM particles.


2016 ◽  
Vol 40 ◽  
pp. 1660116
Author(s):  
Wim de Boer

This paper is a contribution to the memorial session for Michel Borghini at the Spin 2014 conference in Bejing, honoring his pivotal role for the development of polarized targets in high energy physics. Borghini proposed for the first time the correct mechanism for dynamic polarization in polarized targets using organic materials doped with free radicals. In these amorphous materials the spin levels are broadened by spin-spin interactions and g-factor anisotropy, which allows a high dynamic polarization of nuclei by cooling of the spin-spin interaction reservoir. In this contribution I summarize the experimental evidence for this mechanism. These pertinent experiments were done at CERN in the years 1971 - 1974, when I was a graduate student under the guidance of Michel Borghini. I finish by shortly describing how Borghini’s spin temperature theory is now applied in cancer therapy.


2008 ◽  
Vol 01 (01) ◽  
pp. 259-302 ◽  
Author(s):  
Stanley Wojcicki

This article describes the beginnings of the Superconducting Super Collider (SSC). The narrative starts in the early 1980s with the discussion of the process that led to the recommendation by the US high energy physics community to initiate work on a multi-TeV hadron collider. The article then describes the formation in 1984 of the Central Design Group (CDG) charged with directing and coordinating the SSC R&D and subsequent activities which led in early 1987 to the SSC endorsement by President Reagan. The last part of the article deals with the site selection process, steps leading to the initial Congressional appropriation of the SSC construction funds and the creation of the management structure for the SSC Laboratory.


Sign in / Sign up

Export Citation Format

Share Document