Relativistic particles with a nonpolynomial oscillator potential in a spacelike dislocation

2020 ◽  
Vol 35 (21) ◽  
pp. 2050108
Author(s):  
P. Sedaghatnia ◽  
H. Hassanabadi ◽  
G. J. Rampho

We study the relativistic particles with a nonpolynomial oscillator potential in a spacelike dislocation and the solution of the system is obtained by using of quasi-exactly solvable method. The energy and wave functions of the system are described and the permissible values of the potential parameters are examined through the sl(2) Lie algebra.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
M. Baradaran ◽  
H. Panahi

We study the Schrödinger equation with a new quasi-exactly solvable double-well potential. Exact expressions for the energies, the corresponding wave functions, and the allowed values of the potential parameters are obtained using two different methods, the Bethe ansatz method and the Lie algebraic approach. Some numerical results are reported and it is shown that the results are in good agreement with each other and with those obtained previously via a different method.


2020 ◽  
Vol 35 (17) ◽  
pp. 2050071 ◽  
Author(s):  
Soroush Zare ◽  
Hassan Hassanabadi ◽  
Marc de Montigny

We examine an elastic medium with a disclination and consider the topological effects in the presence of a nonpolynomial quantum exactly solvable nonlinear oscillator potential related to the isotonic oscillator, and to which we refer as the Cariñena–Perelomov–Rañada–Santander (CPRS) potential. We obtain the wave functions, which are related to the confluent Heun functions, as well as the energy eigenvalues by solving exactly the corresponding radial Schrödinger equation.


1996 ◽  
Vol 11 (20) ◽  
pp. 1611-1626 ◽  
Author(s):  
A.P. BAKULEV ◽  
S.V. MIKHAILOV

In a recent paper1 we have proposed a new approach for extracting the wave function of the π-meson φπ(x) and the masses and wave functions of its first resonances from the new QCD sum rules for nondiagonal correlators obtained in Ref. 2. Here, we test our approach using an exactly solvable toy model as illustration. We demonstrate the validity of the method and suggest a pure algebraic procedure for extracting the masses and wave functions relating to the case under investigation. We also explore the stability of the procedure under perturbations of the theoretical part of the sum rule. In application to the pion case, this results not only in the mass and wave function of the first resonance (π′), but also in the estimation of π″-mass.


2019 ◽  
Vol 34 (26) ◽  
pp. 1950208 ◽  
Author(s):  
Qian Dong ◽  
Guo-Hua Sun ◽  
M. Avila Aoki ◽  
Chang-Yuan Chen ◽  
Shi-Hai Dong

We find that the analytical solutions to quantum system with a quartic potential [Formula: see text] (arbitrary [Formula: see text] and [Formula: see text] are real numbers) are given by the triconfluent Heun functions [Formula: see text]. The properties of the wave functions, which are strongly relevant for the potential parameters [Formula: see text] and [Formula: see text], are illustrated. It is shown that the wave functions are shrunk to the origin for a given [Formula: see text] when the potential parameter [Formula: see text] increases, while the wave peak of wave functions is concaved to the origin when the negative potential parameter [Formula: see text] increases or parameter [Formula: see text] decreases for a given negative potential parameter [Formula: see text]. The minimum value of the double well case ([Formula: see text]) is given by [Formula: see text] at [Formula: see text].


2005 ◽  
Vol 20 (12) ◽  
pp. 911-921 ◽  
Author(s):  
RAMAZAN KOÇ ◽  
MEHMET KOCA

We extend the notion of Dirac oscillator in two dimensions, to construct a set of potentials. These potentials become exactly and quasi-exactly solvable potentials of nonrelativistic quantum mechanics when they are transformed into a Schrödinger-like equation. For the exactly solvable potentials, eigenvalues are calculated and eigenfunctions are given by confluent hypergeometric functions. It is shown that, our formulation also leads to the study of those potentials in the framework of the supersymmetric quantum mechanics.


2016 ◽  
Vol 94 (4) ◽  
pp. 410-424
Author(s):  
Carlos R. Handy ◽  
Daniel Vrinceanu

Exactly solvable (ES) systems are those for which the full, discrete spectrum can be solved in closed form. In this work, we argue that a moment’s representation analysis can generate these closed-form expressions for the energy in a more direct and transparent manner than the popular Nikiforov–Uvarov (NU) procedure. NU analysis strips the asymptotic form of the physical states. We retain these to generate appropriate moment equations. We show how the form of these moment equations leads to closed-form energy expressions. The wave functions can then be generated as well. Our analysis is extendable to quasi-exactly solvable systems (QES; those for which a subset of the discrete spectrum can be generated in closed form). Two formulations are presented. One of these affirms that a previously developed, general, moment quantization procedure is exact for ES and QES states. This method is referred to as the orthogonal polynomial projection quantization method. It combines moment equation representations for physical states with weighted polynomial expansions (Handy and Vrinceanu. J. Phys. A: Math. Theor. 46, 135202 (2013). doi:10.1088/1751-8113/46/13/135202 ). We also show that in implementing any numerical search procedure to determine the quantum parameter regimes corresponding to ES or QES states, our procedure is more reliable (i.e., numerically stable) than using a Hill determinant formulation. We develop our formalism, demonstrate its effectiveness, and prove its equivalence to the NU approach for ES systems.


2016 ◽  
Vol 30 (03) ◽  
pp. 1650003 ◽  
Author(s):  
Aleksandar Demić ◽  
Vitomir Milanović ◽  
Jelena Radovanović ◽  
Milenko Musić

Bound states degenerated in energy (and differing in parity) may form in one-dimensional quantum mechanics if the potential is unbounded from below. We focus on symmetric potential and present quasi-exactly solvable (QES) model based on WKB method. The application of this method is limited on slow-changing potentials. We consider the overlap integral of WKB wave functions [Formula: see text] and [Formula: see text] which correspond to energies [Formula: see text] and [Formula: see text], and by setting [Formula: see text], we determine the type of spectrum depending on parameter [Formula: see text] which arises from this method. For finite value [Formula: see text], we show that the entire spectrum will consist of degenerated bound states.


2009 ◽  
Vol 24 (08) ◽  
pp. 615-624 ◽  
Author(s):  
HONG-YI FAN ◽  
SHU-GUANG LIU

We introduce a new n-mode Bose operator realization of SU(2) Lie algebra and link it to the two mutually conjugate multipartite entangled state representations. In so doing we are naturally lead to the n-mode entangle fractional Fourier transform (EFFT), which provides us with a convenient way to deriving the EFFT of quantum-mechanical wave functions.


1994 ◽  
Vol 09 (16) ◽  
pp. 1501-1505 ◽  
Author(s):  
O.B. ZASLAVSKII

It is shown that the particular class of one-dimensional quasi-exactly solvable models can be constructed with the help of infinite-dimensional representation of Lie algebra. Hamiltonian of a system is expressed in terms of SU(1,1) generators.


2012 ◽  
Vol 27 (20) ◽  
pp. 1250112 ◽  
Author(s):  
DAVIDS AGBOOLA ◽  
YAO-ZHONG ZHANG

We present exact solutions of the Schrödinger equation with spherically symmetric octic potential. We give closed-form expressions for the energies and the wave functions as well as the allowed values of the potential parameters in terms of a set of algebraic equations.


Sign in / Sign up

Export Citation Format

Share Document