scholarly journals Renormalization in Minkowski space–time

Author(s):  
Imola Steib ◽  
Sándor Nagy ◽  
János Polonyi

The multiplicative and the functional renormalization group methods are applied for the four-dimensional scalar theory in Minkowski space–time. It is argued that the appropriate choice of the subtraction point is more important in Minkowski than in Euclidean space–time. The parameters of the cutoff theory, defined by a subtraction point in the quasi-particle domain, are complex due to the mass-shell contributions and the renormalization group flow becomes much more involved than its Euclidean counterpart.

2016 ◽  
Vol 46 (1) ◽  
pp. 159-170 ◽  
Author(s):  
Emilija Nešović ◽  
Milica Grbović

2015 ◽  
Vol 91 (2) ◽  
Author(s):  
M. E. Carrington ◽  
Wei-Jie Fu ◽  
D. Pickering ◽  
J. W. Pulver

2007 ◽  
Vol 16 (06) ◽  
pp. 1027-1041 ◽  
Author(s):  
EDUARDO A. NOTTE-CUELLO ◽  
WALDYR A. RODRIGUES

Using the Clifford bundle formalism, a Lagrangian theory of the Yang–Mills type (with a gauge fixing term and an auto interacting term) for the gravitational field in Minkowski space–time is presented. It is shown how two simple hypotheses permit the interpretation of the formalism in terms of effective Lorentzian or teleparallel geometries. In the case of a Lorentzian geometry interpretation of the theory, the field equations are shown to be equivalent to Einstein's equations.


2010 ◽  
Vol 07 (02) ◽  
pp. 185-213 ◽  
Author(s):  
DAVID ALBA ◽  
LUCA LUSANNA

We apply the theory of noninertial frames in Minkowski space–time, developed in the previous paper, to various relevant physical systems. We give the 3 + 1 description without coordinate singularities of the rotating disk and the Sagnac effect, with added comments on pulsar magnetosphere and on a relativistic extension of the Earth-fixed coordinate system. Then we study properties of Maxwell equations in noninertial frames like the wrap-up effect and the Faraday rotation in astrophysics.


2009 ◽  
Vol 24 (28) ◽  
pp. 2233-2241 ◽  
Author(s):  
DARIO BENEDETTI ◽  
PEDRO F. MACHADO ◽  
FRANK SAUERESSIG

We study the nonperturbative renormalization group flow of higher-derivative gravity employing functional renormalization group techniques. The nonperturbative contributions to the β-functions shift the known perturbative ultraviolet fixed point into a nontrivial fixed point with three UV-attractive and one UV-repulsive eigendirections, consistent with the asymptotic safety conjecture of gravity. The implication of this transition on the unitarity problem, typically haunting higher-derivative gravity theories, is discussed.


2015 ◽  
Vol 93 (10) ◽  
pp. 1005-1008 ◽  
Author(s):  
Rasulkhozha S. Sharafiddinov

The unity of the structure of matter fields with flavor symmetry laws involves that the left-handed neutrino in the field of emission can be converted into a right-handed one and vice versa. These transitions together with classical solutions of the Dirac equation testify in favor of the unidenticality of masses, energies, and momenta of neutrinos of the different components. If we recognize such a difference in masses, energies, and momenta, accepting its ideas about that the left-handed neutrino and the right-handed antineutrino refer to long-lived leptons, and the right-handed neutrino and the left-handed antineutrino are short-lived fermions, we would follow the mathematical logic of the Dirac equation in the presence of the flavor symmetrical mass, energy, and momentum matrices. From their point of view, nature itself separates Minkowski space into left and right spaces concerning a certain middle dynamical line. Thereby, it characterizes any Dirac particle both by left and by right space–time coordinates. It is not excluded therefore that whatever the main purposes each of earlier experiments about sterile neutrinos, namely, about right-handed short-lived neutrinos may serve as the source of facts confirming the existence of a mirror Minkowski space–time.


Sign in / Sign up

Export Citation Format

Share Document