PHYSICS: ITS DEVELOPMENT AND PHILOSOPHY

1989 ◽  
Vol 04 (18) ◽  
pp. 4643-4733
Author(s):  
TA-YOU WU

We attempt to review the development of physics in its historical order: classical dynamics; optics and electromagnetic theory followed naturally by the special theory of relativity; the general theory of relativity; from another direction, the kinetic theory of gases, thermodynamics and statistical mechanics which led to the discovery of the quantum theory; atomic physics that led to quantum mechanics; the theoretical and experimental studies of elementary particle physics. Some efforts were made to bring out the basic concepts in these theories and their changes, namely, the abandoning of the absolute time and simultaneity, simultaneous exact knowledge of position and momentum of a particle and determinism of Newtonian physics in the relativity theory and quantum mechanics; the concept of quantized field and unified fields. The interplay between experiments and theories in the development of physics was summarized by a table at the end of the article.

Author(s):  
David Wallace

This chapter discusses how relativity theory affects our ideas about space, time, and motion. The special theory of relativity does not introduce the idea that motion is relative: it combines that idea, already present in Newtonian physics, with the idea that the speed of light does not depend on the motion of the source. This combination has surprising consequences: that moving clocks run slow; that moving rods shrink. This is apparently in flat contradiction with the relativity principle. The resolution of this paradox looks very different depending on one’s view of what spacetime is: is it simply a codification of physics, or can it do explanatory work in its own right. Thus the paradox lets us get clearer on what is at stake in these questions about the nature of spacetime. Relativity also imperils the idea that simultaneity—the relationship between two events when they occur at the same time—is relative and/or conventional. The epilogue of the chapter briefly discusses the general theory of relativity.


2020 ◽  
Author(s):  
Douglas Michael Snyder

Though Einstein and other physicists recognized the importance of an observer being at rest in an inertial reference frame for the special theory of relativity, the supporting psychological structures were not discussed much by physicists. On the other hand, Rock wrote of the factors involved in the perception of motion, including one’s own motion. Rock thus came to discuss issues of significance to relativity theory, apparently without any significant understanding of how his theory might be related to relativity theory. In this paper, connections between Rock’s theory on the perception of one’s own motion, as well as empirical work supporting it, and relativity theory are explored. Paper available at: https://arxiv.org/abs/physics/9908025v1 .


2021 ◽  
pp. 1-6
Author(s):  
Robert J Buenker ◽  

One of the most basic principles in science is the objectivity of measurement of physical properties. According to the special theory of relativity (STR), this ancient principle is violated for observers in relative motion since it predicts that they generally will disagree on the ratios of the lengths of two objects and also on whose clock is running slower at any given time. Both predictions stem from the Lorentz transformation (LT), which is the centerpiece of Einstein's STR. It has recently been pointed out that two of the claims of this theory are mutually contradictory; it is impossible that the rates of two clocks in motion are strictly proportional to one another (time dilation) while one of them finds that two events are simultaneous whereas the other does not (remote nonsimultaneity). This recognition proves that the LT is not a valid component of the relativistic theory of motion, including its well-known thesis that space and time are not distinct quantities. Instead, it has always been found experimentally that the rates of clocks in motion are governed by a Universal Timedilation Law (UTDL), whereby the speed of the clock relative to a specific rest system is the sole determining factor. A simple way of describing this state of affairs is to say that the standard unit of time in each rest frame is different and increases with its relative speed to the above rest system by a definite factor. The measurement process is thereby rendered to be completely objective in nature. A key goal of relativity theory is therefore to develop a quantitatively valid method for determining this factor. It will be shown that the same factor appears in the true relativistic space-time transformation and that it also plays a key role in the uniform scaling of all other physical properties


Semiotica ◽  
2015 ◽  
Vol 2015 (205) ◽  
pp. 149-167
Author(s):  
Vern S. Poythress

AbstractSemiotic analysis of the role of the observer in the theory of relativity and in quantum mechanics shows the semiotic function of basic symmetries, such as symmetries under translation and rotation. How can semiotics be relevant to theories in physics? It is always human beings who form the theories. In the process of theory formation and communication, they rely on semiotic systems. Included among these systems is the semiotics involved in our pre-theoretical human understanding of space, time, and motion. Semiotic systems thereby have an influence on theories in physics. As a result, key concepts in fundamental physical theory have affinities with semiotics. In terms of Kenneth Pike’s tagmemic theory, applied as a theory of theories, all symmetries take the form of distributional constraints. The additional symmetry under Lorentz transformations introduced by the special theory of relativity fits into the same pattern. In addition, constraints introduced by the addition of general relativity suggest the form and limitations that might be taken by a “theory of everything” encompassing general relativity and quantum field theory.


Author(s):  
James T. Cushing

Electric charges interact via the electric and magnetic fields they produce. Electrodynamics is the study of the laws governing these interactions. The phenomena of electricity and of magnetism were once taken to constitute separate subjects. By the beginning of the nineteenth century they were recognized as closely related topics and by the end of that century electromagnetic phenomena had been unified with those of optics. Classical electrodynamics provided the foundation for the special theory of relativity, and its unification with the principles of quantum mechanics has led to modern quantum field theory, arguably our most fundamental physical theory to date.


2021 ◽  
pp. 54-75
Author(s):  
A. J. Kox ◽  
H. F. Schatz

Chapter 4 contains an overview of Lorentz’s early work in terms accessible to a general audience. It sheds light on his unique place in science and the importance of his ideas, especially in the field of electromagnetic theory (his theory of electrons). A description of physics in the early nineteenth century, highlighting the role of Faraday and Maxwell, is followed by a discussion of Lorentz’s dissertation and his research program, the explanation of the Zeeman effect and the introduction of the electron, as well as the role of the ether. In this context the famous experiment by Michelson and Morley is also discussed, as well as the electromagnetic world view, Einstein’s special theory of relativity, and the question of which theory was to be preferred: Lorentz’s electron theory or Einstein’s special relativity theory?


2021 ◽  
pp. 1-4
Author(s):  
Peter J. Riggs

A broader concept of “resistance to acceleration” than used in classical dynamics, called “inertial resistance”, is quantified for both inertial and non-inertial relativistic motion. Special Relativity shows that inertial resistance is more than particle inertia and originates from Minkowski spacetime structure. Current mainstream explanations of inertia do not take inertial resistance into account and are, therefore, incomplete.


Conceptus ◽  
2008 ◽  
Vol 37 (92) ◽  
Author(s):  
Friedel Weinert

SummaryThe aim of this paper is to infer conclusions about the temporality of the physical world from central features of the measurement of time. In order to do so it makes a distinction between the passage of time and the measurement of the passage of time. Whilst the passage of time can be experienced on the basis of, say, chaotic processes, the measurement of the passage of time requires certain physical regularities. But regularity is not sufficient and it is important to highlight the connection between time, regularity and invariance in the measurement of time, especially with respect to classical physics, the Special theory of relativity and quantum mechanics. It is only after this connection has been clarified that the paper considers the dispute on whether the physical world is static or dynamic. As there are clearly both time-symmetric physical laws and time-asymmetric physical processes, the question is empirically underdetermined because the evidence is at present compatible with two incompatible views about the temporality of the physical world.


2015 ◽  
Vol 37 (3) ◽  
pp. 3401-1-3401-10 ◽  
Author(s):  
María Rita Otero ◽  
Marcelo Arlego ◽  
Fabiana Prodanoff

In this work, we design, implement and analyze a didactic sequence for the teaching of the basic topics of special relativity theory in high school. The sequence proposes a series of situations, specially designed to allow the emergence of the central aspects of special relativity. The conceptualization process is investigated from the point of view of the theory of conceptual fields of Vergnaud. By means of a careful analysis of classroom student productions we detect the key theorems-in-action they use, evidencing that most of conceptual errors are of pre-relativistic nature. This leads us to a reformulation of the sequence, which promotes the conceptualization of Galilean relativity and the principles of the special relativity. This previous step aims at bringing to students a firm basis to address the more complex aspects of the subject.


Sign in / Sign up

Export Citation Format

Share Document