CONSTRUCTION OF GENERAL COLORED R MATRICES FOR THE YANG-BAXTER EQUATION AND q-BOSON REALIZATION OF QUANTUM ALGEBRA slq(2) WHEN q IS A ROOT OF UNITY

1992 ◽  
Vol 07 (26) ◽  
pp. 6609-6622 ◽  
Author(s):  
MO-LIN GE ◽  
CHANG-PU SUN ◽  
KANG XUE

Through a general q-boson realization of quantum algebra sl q(2) and its universal R matrix an operator R matrix with many parameters is obtained in terms of q-boson operators. Building finite-dimensional representations of q-boson algebra, we construct various colored R matrices associated with nongeneric representations of sl q(2) with dimension-independent parameters. The “nonstandard” R matrices obtained by Lee-Couture and Murakami are their special examples. We also study the factorizable structure of some Rmatrices for the indecomposable representations used in its construction.

1992 ◽  
Vol 07 (25) ◽  
pp. 6175-6213 ◽  
Author(s):  
T. TJIN

We give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups we study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then we explain in detail the concept of quantization for them. As an example the quantization of sl2 is explicitly carried out. Next we show how quantum groups are related to the Yang-Baxter equation and how they can be used to solve it. Using the quantum double construction we explicitly construct the universal R matrix for the quantum sl2 algebra. In the last section we deduce all finite-dimensional irreducible representations for q a root of unity. We also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory.


1991 ◽  
Vol 03 (02) ◽  
pp. 223-240 ◽  
Author(s):  
M. D. GOULD ◽  
R. B. ZHANG ◽  
A. J. BRACKEN

The theory of Lie bi-superalgebras and its connection with the graded classical Yang-Baxter equation are studied. The classical double construction is developed in some detail in the graded case; this allows the embedding of any given finite dimensional Lie bi-superalgebra in a quasitriangular Lie bi-superalgebra. A universal formula for the classical r-matrix is obtained in an explicit form.


1996 ◽  
Vol 11 (36) ◽  
pp. 2883-2891 ◽  
Author(s):  
B. ABDESSELAM ◽  
A. CHAKRABARTI ◽  
R. CHAKRABARTI

The generators of the Jordanian quantum algebra Uh( sl (2)) are expressed as nonlinear invertible functions of the classical sl(2) generators. This permits immediate explicit construction of the finite-dimensional irreducible representations of the algebra Uh( sl (2)). Using this construction, new finite-dimensional solutions of the Yang-Baxter equation may be obtained.


2002 ◽  
Vol 31 (9) ◽  
pp. 513-553 ◽  
Author(s):  
Stanislav Pakuliak ◽  
Sergei Sergeev

We investigate anN-state spin model called quantum relativistic Toda chain and based on the unitary finite-dimensional representations of the Weyl algebra withqbeingNth primitive root of unity. Parameters of the finite-dimensional representation of the local Weyl algebra form the classical discrete integrable system. Nontrivial dynamics of the classical counterpart corresponds to isospectral transformations of the spin system. Similarity operators are constructed with the help of modified Baxter'sQ-operators. The classical counterpart of the modifiedQ-operator for the initial homogeneous spin chain is a Bäcklund transformation. This transformation creates an extra Hirota-type soliton in a parameterization of the chain structure. Special choice of values of solitonic amplitudes yields a degeneration of spin eigenstates, leading to the quantum separation of variables, or the functional Bethe ansatz. A projector to the separated eigenstates is constructed explicitly as a product of modifiedQ-operators.


Open Physics ◽  
2010 ◽  
Vol 8 (4) ◽  
Author(s):  
Andrey Smirnov

AbstractNew trigonometric and rational solutions of the quantum Yang-Baxter equation (QYBE) are obtained by applying some singular gauge transformations to the known Belavin-Drinfeld elliptic R-matrix for sl(2;?). These solutions are shown to be related to the standard ones by the quasi-Hopf twist. We demonstrate that the quantum algebras arising from these new R-matrices can be obtained as special limits of the Sklyanin algebra. A representation for these algebras by the difference operators is found. The sl(N;?)-case is discussed.


2008 ◽  
Vol 22 (13) ◽  
pp. 1307-1315
Author(s):  
RUGUANG ZHOU ◽  
ZHENYUN QIN

A technique for nonlinearization of the Lax pair for the scalar soliton equations in (1+1) dimensions is applied to the symmetric matrix KdV equation. As a result, a pair of finite-dimensional integrable Hamiltonian systems, which are of higher rank generalization of the classic Gaudin models, are obtained. The integrability of the systems are shown by the explicit Lax representations and r-matrix method.


2020 ◽  
pp. 211-234
Author(s):  
Giuseppe Mussardo

This chapter deals with the exact solution of the two-dimensional Ising model as it is achieved through the transfer matrix formalism. It discusses the crucial role played by the commutative properties of the transfer matrices, which lead to a functional equation for their eigenvalues. The exact free energy of the Ising model and its critical point can be identified by means of the lowest eigenvalue. The chapter covers Baxter's approach, the Yang–Baxter equation and its relation to the Boltzmann weights, the R-matrix, and discusses activity away from the critical point, the six-vertex model, as well as functional equations and symmetries.


2020 ◽  
pp. 1-14
Author(s):  
GENQIANG LIU ◽  
YANG LI

Abstract In 1996, a q-deformation of the universal enveloping algebra of the Schrödinger Lie algebra was introduced in Dobrev et al. [J. Phys. A 29 (1996) 5909–5918.]. This algebra is called the quantum Schrödinger algebra. In this paper, we study the Bernstein-Gelfand-Gelfand (BGG) category $\mathcal{O}$ for the quantum Schrödinger algebra $U_q(\mathfrak{s})$ , where q is a nonzero complex number which is not a root of unity. If the central charge $\dot z\neq 0$ , using the module $B_{\dot z}$ over the quantum Weyl algebra $H_q$ , we show that there is an equivalence between the full subcategory $\mathcal{O}[\dot Z]$ consisting of modules with the central charge $\dot z$ and the BGG category $\mathcal{O}^{(\mathfrak{sl}_2)}$ for the quantum group $U_q(\mathfrak{sl}_2)$ . In the case that $\dot z = 0$ , we study the subcategory $\mathcal{A}$ consisting of finite dimensional $U_q(\mathfrak{s})$ -modules of type 1 with zero action of Z. We directly construct an equivalence functor from $\mathcal{A}$ to the category of finite dimensional representations of an infinite quiver with some quadratic relations. As a corollary, we show that the category of finite dimensional $U_q(\mathfrak{s})$ -modules is wild.


Sign in / Sign up

Export Citation Format

Share Document