scholarly journals NONCOMMUTATIVE GEOMETRY AND A DISCRETIZED VERSION OF KALUZA-KLEIN THEORY WITH A FINITE FIELD CONTENT

1996 ◽  
Vol 11 (03) ◽  
pp. 533-551 ◽  
Author(s):  
NGUYEN AI VIET ◽  
KAMESHWAR C. WALI

We consider a four-dimensional space-time supplemented by two discrete points assigned to a Z2-algebraic structure and develop the formalism of noncommutative geometry. By setting up a generalized vielbein, we study the metric structure. Metric-compatible torsion-free connection defines a unique finite field content in the model and leads to a discretized version of Kaluza-Klein theory. We study some special cases of this model that illustrate the rich and complex structure with massive modes and the possible presence of a cosmological constant.

2006 ◽  
Vol 21 (28n29) ◽  
pp. 5905-5956 ◽  
Author(s):  
MATEJ PAVŠIČ

A theory in which four-dimensional space–time is generalized to a larger space, namely a 16-dimensional Clifford space (C-space) is investigated. Curved Clifford space can provide a realization of Kaluza–Klein. A covariant Dirac equation in curved C-space is explored. The generalized Dirac field is assumed to be a polyvector-valued object (a Clifford number) which can be written as a superposition of four independent spinors, each spanning a different left ideal of Clifford algebra. The general transformations of a polyvector can act from the left and/or from the right, and form a large gauge group which may contain the group U (1) × SU (2) × SU (3) of the standard model. The generalized spin connection in C-space has the properties of Yang–Mills gauge fields. It contains the ordinary spin connection related to gravity (with torsion), and extra parts describing additional interactions, including those described by the antisymmetric Kalb–Ramond fields.


2004 ◽  
Vol 19 (29) ◽  
pp. 5043-5050 ◽  
Author(s):  
YONGGE MA ◽  
JUN WU

A free test particle in five-dimensional Kaluza–Klein space–time will show its electricity in the reduced four-dimensional space–time when it moves along the fifth dimension. In the light of this observation, we study the coupling of a five-dimensional dust field with the Kaluza–Klein gravity. It turns out that the dust field can curve the five-dimensional space–time in such a way that it provides exactly the source of the electromagnetic field in the four-dimensional space–time after the dimensional reduction.


2019 ◽  
Author(s):  
Wim Vegt

Albert Einstein, Lorentz and Minkowski published in 1905 the Theory of Special Relativity and Einstein published in 1915 his field theory of general relativity based on a curved 4-dimensional space-time continuum to integrate the gravitational field and the electromagnetic field in one unified field. Since then the method of Einstein’s unifying field theory has been developed by many others in more than 4 dimensions resulting finally in the well-known 10-dimensional and 11-dimensional “string theory”. String theory is an outgrowth of S-matrix theory, a research program begun by Werner Heisenberg in 1943 (following John Archibald Wheeler‘s(3) 1937 introduction of the S-matrix), picked up and advocated by many prominent theorists starting in the late 1950’s.Theodor Franz Eduard Kaluza (1885-1954), was a German mathematician and physicist well-known for the Kaluza–Klein theory involving field equations in curved five-dimensional space. His idea that fundamental forces can be unified by introducing additional dimensions re-emerged much later in the “String Theory”.The original Kaluza-Klein theory was one of the first attempts to create an unified field theory i.e. the theory, which would unify all the forces under one fundamental law. It was published in 1921 by Theodor Kaluza and extended in 1926 by Oskar Klein. The basic idea of this theory was to postulate one extra compactified space dimension and introduce nothing but pure gravity in a new (1 + 4)-dimensional space-time. Klein suggested that the fifth dimension would be rolled up into a tiny, compact loop on the order of 10-35 [m]The presented "New Unification Theory" unifies Classical Electrodynamics with General Relativity and Quantum Physics


1996 ◽  
Vol 11 (13) ◽  
pp. 2403-2418 ◽  
Author(s):  
NGUYEN AI VIET ◽  
KAMESHWAR C. WALI

We consider an internal space of two discrete points in the fifth dimension of the Kaluza–Klein theory by using the formalism of noncommutative geometry — developed in a previous paper1 — of a spacetime supplemented by two discrete points. With the non-vanishing internal torsion two-form there are no constraints implied on the vielbeins. The theory contains a pair of tensor fields, a pair of vector fields and a pair of scalar fields. Using the generalized Cartan structure equation we are able to uniquely determine not only the Hermitian and metric-compatible connection one-forms, but also the nonvanishing internal torsion two-form in terms of vielbeins. The resulting action has a rich and complex structure, a particular feature being the existence of massive modes. Thus the nonvanishing internal torsion generates a Kaluza–Klein type model with zero and massive modes.


2019 ◽  
Author(s):  
Wim Vegt

Albert Einstein, Lorentz and Minkowski published in 1905 the Theory of Special Relativity and Einstein published in 1915 his field theory of general relativity based on a curved 4-dimensional space-time continuum to integrate the gravitational field and the electromagnetic field in one unified field. Since then the method of Einstein’s unifying field theory has been developed by many others in more than 4 dimensions resulting finally in the well-known 10-dimensional and 11-dimensional “string theory”. String theory is an outgrowth of S-matrix theory, a research program begun by Werner Heisenberg in 1943 (following John Archibald Wheeler‘s(3) 1937 introduction of the S-matrix), picked up and advocated by many prominent theorists starting in the late 1950’s.Theodor Franz Eduard Kaluza (1885-1954), was a German mathematician and physicist well-known for the Kaluza–Klein theory involving field equations in curved five-dimensional space. His idea that fundamental forces can be unified by introducing additional dimensions re-emerged much later in the “String Theory”.The original Kaluza-Klein theory was one of the first attempts to create an unified field theory i.e. the theory, which would unify all the forces under one fundamental law. It was published in 1921 by Theodor Kaluza and extended in 1926 by Oskar Klein. The basic idea of this theory was to postulate one extra compactified space dimension and introduce nothing but pure gravity in a new (1 + 4)-dimensional space-time. Klein suggested that the fifth dimension would be rolled up into a tiny, compact loop on the order of 10-35 [m]The presented "New Unification Theory" unifies Classical Electrodynamics with General Relativity and Quantum Physics


2019 ◽  
Author(s):  
Wim Vegt

The Light we see in our daily world has the Power to open Doors that have never been openened before.Albert Einstein, Lorentz and Minkowski published together in 1905 the Theory of Special Relativity and Einstein published in 1915 his field theory of general relativity based on a curved 4-dimensional space-time continuum to integrate the gravitational field and the electromagnetic field in one unified field. Since then the method of Einstein’s unifying field theory has been developed by many others in more than 4 dimensions resulting finally in the well-known 10-dimensional and 11-dimensional “string theory”. String theory is an outgrowth of S-matrix theory, a research program begun by Werner Heisenberg in 1943 (following John Archibald Wheelers 1937 introduction of the S-matrix), picked up and advocated by many prominent theorists starting in the late 1950’s.Theodor Franz Eduard Kaluza (1885-1954), was a German mathematician and physicist well-known for the Kaluza–Klein theory involving field equations in curved five-dimensional space. His idea that fundamental forces can be unified by introducing additional dimensions re-emerged much later in the “String Theory”.The original Kaluza-Klein theory was one of the first attempts to create an unified field theory i.e. the theory, which would unify all the forces under one fundamental law. It was published in 1921 by Theodor Kaluza and extended in 1926 by Oskar Klein. The basic idea of this theory was to postulate one extra compactified space dimension and introduce nothing but pure gravity in a new (1 + 4)-dimensional space-time. Klein suggested that the fifth dimension would be rolled up into a tiny, compact loop on the order of 10-35 [m]The "New Theory" represents the "4-dimensional Unification of De Broglie Waves and Electromagnetic Waves". The "New Theory" demonstrates that the propagation of light is fully consistent with Newton's famous 3 laws of motion. That the speed of light is fully controlled by a prefect equilibrium between the inertia of the electromagnetic radiation energy (electromagnetic mass) and the electromagnetic "Radiation Pressure" at the front of the "Beam of Light". That, in the application of a laser beam, the outward oriented radiation pressure at the sides of the laser beam has been fully compensated by the inward oriented forces of electromagnetic interaction according Newton’s third law "Action = Reaction".


2000 ◽  
Vol 15 (08) ◽  
pp. 1235-1243 ◽  
Author(s):  
CHRISTOPHER KOHLER

A modification of Kaluza–Klein theory is proposed in which, as a result of a symmetry breaking, five-dimensional space–time is partially parallelized implying the appearance of torsion fields. A naturally chosen action functional leads to the Einstein–Cartan–Maxwell theory where the electromagnetic field strength is represented by the fifth component of the torsion two-form. Incorporation of a scalar field reveals that four-dimensional space–time torsion is not induced by the scalar field.


2018 ◽  
Author(s):  
Wim Vegt

Albert Einstein, Lorentz and Minkowski published in 1905 the Theory of Special Relativity and Einstein published in 1915 his field theory of general relativity based on a curved 4-dimensional space-time continuum to integrate the gravitational field and the electromagnetic field in one unified field. Since then the method of Einstein’s unifying field theory has been developed by many others in more than 4 dimensions resulting finally in the well-known 10-dimensional and 11-dimensional “string theory”. String theory is an outgrowth of S-matrix theory, a research program begun by Werner Heisenberg in 1943 (following John Archibald Wheeler‘s(3) 1937 introduction of the S-matrix), picked up and advocated by many prominent theorists starting in the late 1950’s.Theodor Franz Eduard Kaluza (1885-1954), was a German mathematician and physicist well-known for the Kaluza–Klein theory involving field equations in curved five-dimensional space. His idea that fundamental forces can be unified by introducing additional dimensions re-emerged much later in the “String Theory”.The original Kaluza-Klein theory was one of the first attempts to create an unified field theory i.e. the theory, which would unify all the forces under one fundamental law. It was published in 1921 by Theodor Kaluza and extended in 1926 by Oskar Klein. The basic idea of this theory was to postulate one extra compactified space dimension and introduce nothing but pure gravity in a new (1 + 4)-dimensional space-time. Klein suggested that the fifth dimension would be rolled up into a tiny, compact loop on the order of 10^-35 [m]


2009 ◽  
Vol 18 (04) ◽  
pp. 599-611 ◽  
Author(s):  
ALFRED MOLINA ◽  
NARESH DADHICH

By considering the product of the usual four-dimensional space–time with two dimensional space of constant curvature, an interesting black hole solution has recently been found for Einstein–Gauss–Bonnet gravity. It turns out that this as well as all others could easily be made to radiate Vaidya null dust. However, there exists no Kerr analog in this setting. To get the physical feel of the four-dimensional black hole space–times, we study asymptotic behavior of stresses at the two ends, r → 0 and r → ∞.


1986 ◽  
Vol 169 (4) ◽  
pp. 327-332 ◽  
Author(s):  
M. Chaichian ◽  
A.P. Demichev ◽  
N.F. Nelipa

Sign in / Sign up

Export Citation Format

Share Document