COMPARISONS OF NEGATIVE REFRACTION IN LEFT-HANDED MATERIALS AND PHOTONIC CRYSTALS

2005 ◽  
Vol 19 (23) ◽  
pp. 3547-3561
Author(s):  
LIANG FENG ◽  
XIAO-PING LIU ◽  
JIE REN ◽  
YAN-FENG CHEN ◽  
YONG-YUAN ZHU

Using the equifrequency surfaces (EFS) to describe negative refractions in left-handed materials (LHMs) and photonic crystals (PCs), negative phase and negative group refractive indexes in LHMs were compared with positive phase and negative group refractive indexes in PCs. The refractive indexes in PCs were dependent on frequencies and incident angles of electromagnetic wave, while indexes in LHMs were constant in the left-handed region. Furthermore, the phase compensating effect resulting from the negative phase refractive index was addressed to distinguish the perfect lens made of LHMs from the superlens realized in the all angle negative refraction (AANR) region of PCs.

2013 ◽  
Vol 320 ◽  
pp. 128-132
Author(s):  
Guo Yan Dong ◽  
Ji Zhou

Anomalous optical transmission phenomena have ever been discovered in various metamaterials, which can be modulated more easily in Photonic crystals (PhCs). Compared with the regular PhCs composed of round rods closely packed in air, the equal frequency contours (EFC) of honeycomb lattice PhCs constituted by trigonal rods are more rounded and more suitable to realize the all-angle left-handed negative refraction (AALNR) in the low band region. Due to the hex EFC distribution, the regular PhC can be applied in the optical collimator design. In the higher band regions, the more complicated refraction behaviors can be excited based on the intricate undulation of one band or the overlap of different bands in PhCs. These unique features will provide us with more understanding of electromagnetic wave propagation in PhCs and give important guideline for the design of new type optical devices.


2006 ◽  
Vol 3 (2) ◽  
pp. 189-218 ◽  
Author(s):  
Victor Veselago ◽  
Leonid Braginsky ◽  
Valery Shklover ◽  
Christian Hafner

The main directions of studies of materials with negative index of refraction, also called left-handed or metamaterials, are reviewed. First, the physics of the phenomenon of negative refraction and the history of this scientific branch are outlined. Then recent results of studies of photonic crystals that exhibit negative refraction are discussed. In the third part numerical methods for the simulation of negative index material configurations and of metamaterials that exhibit negative index properties are presented. The advantages and the shortages of existing computer packages are analyzed. Finally, details of the fabrication of different kinds of metamaterials are given. This includes composite metamaterials, photonic crystals, and transmission line metamaterials for different wavelengths namely radio frequencies, microwaves, terahertz, infrared, and visible light. Furthermore, some examples of practical applications of metamaterials are presented.


2005 ◽  
Vol 86 (12) ◽  
pp. 124102 ◽  
Author(s):  
Koray Aydin ◽  
Kaan Guven ◽  
Costas M. Soukoulis ◽  
Ekmel Ozbay

Author(s):  
Ceji Fu ◽  
Zhuomin M. Zhang ◽  
David B. Tanner

In 1968, Veselago [1] predicted that there could still be propagating waves in a medium that had simultaneously negative permittivity ε and permeability μ, because the product of ε and μ would be positive. However, to ensure energy conservation, he concluded that the refractive index must use the negative square root of the product of ε and μ (i.e., n = εμ). A consequence is certain unusual optical features in negative-index media. The electric field vector E, magnetic field vector H and wave vector k are a left-handed triplet, the basis for calling materials with simultaneously negative ε and μ “left-handed materials” (LHMs). LHMs would have novel optical properties. Light at non-normal incidence would bend to the side opposite that in a normal RHM; positive lenses would become negative; a flat slab could focus. The phase velocity of an electromagnetic wave would be opposite to the direction of energy flux, resulting in a reversed Doppler effect. Photons would have negative momentum and apply tension to the interface upon reflection. Recently, this kind of material has been demonstrated experimentally to exist. Shelby et al. [2] measured the scattering angle of the transmitted beam through a prism manufactured from a composite material consisting of a two-dimensional array of copper wires and split ring resonators and showed that the effective refractive index of the material is negative at microwave frequencies. Recent theoretical studies also showed that some photonic crystals might have negative-refraction properties in the near infrared spectral region [3].


2005 ◽  
Vol 19 (01n02) ◽  
pp. 21-33 ◽  
Author(s):  
YONG ZHANG ◽  
A. MASCARENHAS

Recently there has been a great deal of interest in an unusual category of material, that is, a material that exhibits negative refractive index or more generally negative group velocity. Perhaps the most immediate application of this type of material is in an area known as total and negative refraction, which may potentially lead to many novel optical devices. The reason that the phenomenon of total and negative refraction has become so interesting to the physics community is also due largely to the notion that this phenomenon would never occur in conventional materials with positive refractive index. It turns out that total and negative refraction can be realized even in natural crystalline materials or in artificial materials (e.g. photonic crystals) without negative (effective) refractive index. In this brief review, after providing a brief historic account for the research related to finding materials with negative group velocity and achieving negative refraction, we discuss the three primary approaches that have yielded experimental demonstrations of negative refraction, in an effort to clarify the underlying physics involved with each approach. A brief discussion on the subwavelength resolution application of the negative (effective) refractive index material is also given.


2006 ◽  
Vol 73 (16) ◽  
Author(s):  
Radoš Gajić ◽  
Ronald Meisels ◽  
Friedemar Kuchar ◽  
Kurt Hingerl

Sign in / Sign up

Export Citation Format

Share Document