PROJECTED ENTANGLED STATES: PROPERTIES AND APPLICATIONS

2006 ◽  
Vol 20 (30n31) ◽  
pp. 5142-5153 ◽  
Author(s):  
F. VERSTRAETE ◽  
M. WOLF ◽  
D. PÉREZ-GARCÍA ◽  
J. I. CIRAC

We present a new characterization of quantum states, what we call Projected Entangled-Pair States (PEPS). This characterization is based on constructing pairs of maximally entangled states in a Hilbert space of dimension D2, and then projecting those states in subspaces of dimension d. In one dimension, one recovers the familiar matrix product states, whereas in higher dimensions this procedure gives rise to other interesting states. We have used this new parametrization to construct numerical algorithms to simulate the ground state properties and dynamics of certain quantum-many body systems in two dimensions.

Author(s):  
Robert J Marks II

N dimensional signals are characterized as values in an N dimensional space. Each point in the space is assigned a value, possibly complex. Each dimension in the space can be discrete, continuous, or on a time scale. A black and white movie can be modelled as a three dimensional signal.Acolor picture can be modelled as three signals in two dimensions, one each, for example, for red, green and blue. This chapter explores Fourier characterization of different types of multidimensional signals and corresponding applications. Some signal characterizations are straightforward extensions of their one dimensional counterparts. Others, even in two dimensions, have properties not found in one dimensional signals. We are fortunate to be able to visualize structures in two, three, and sometimes four dimensions. It assists in the intuitive generalization of properties to higher dimensions. Fourier characterization of multidimensional signals allows straightforward modelling of reconstruction of images from their tomographic projections. Doing so is the foundation of certain medical and industrial imaging, including CAT (for computed axial tomography) scans. Multidimensional Fourier series are based on models found in nature in periodically replicated crystal Bravais lattices [987, 1188]. As is one dimension, the Fourier series components can be found from sampling the Fourier transform of a single period of the periodic signal. The multidimensional cosine transform, a relative of the Fourier transform, is used in image compression such as JPG images. Multidimensional signals can be filtered. The McClellan transform is a powerful method for the design of multidimensional filters, including generalization of the large catalog of zero phase one dimensional FIR filters into higher dimensions. As in one dimension, the multidimensional sampling theorem is the Fourier dual of the Fourier series. Unlike one dimension, sampling can be performed at the Nyquist density with a resulting dependency among sample values. This property can be used to reduce the sampling density of certain images below that of Nyquist, or to restore lost samples from those remaining. Multidimensional signal and image analysis is also the topic of Chapter 9 on time frequency representations, and Chapter 11 where POCS is applied signals in higher dimensions.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 984
Author(s):  
Regina Finsterhölzl ◽  
Manuel Katzer ◽  
Andreas Knorr ◽  
Alexander Carmele

This paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenient structure of the MPS-architecture, which exploits the initial state of system and reservoir. By doing so, numerically expensive re-ordering protocols are circumvented. It is applicable to systems with a Markovian type of interaction, where only the present state of the reservoir needs to be taken into account. Its adaption to a non-Markovian type of interaction between the many-body system and the reservoir is demonstrated, where the information backflow from the reservoir needs to be included in the computation. Also, the derivation of the basis in the quantum stochastic Schrödinger picture is shown. As a paradigmatic model, the Heisenberg spin chain with nearest-neighbor interaction is used. It is demonstrated that the algorithm allows for the access of large systems sizes. As an example for a non-Markovian type of interaction, the generation of highly unusual steady states in the many-body system with coherent feedback control is demonstrated for a chain length of N=30.


2009 ◽  
Vol 79 (6) ◽  
Author(s):  
J. Molina ◽  
H. Wichterich ◽  
V. E. Korepin ◽  
S. Bose

1977 ◽  
Vol 9 (2) ◽  
pp. 268-282 ◽  
Author(s):  
Stanley Sawyer

Let I(x, u) be the probability that two genes found a vector distance x apart are the same type in an infinite-allele selectively-neutral migration model with mutation rate u. The creatures involved inhabit an infinite of colonies, are diploid and are held at N per colony. Set in one dimension and in higher dimensions, where σ2 is the covariance matrix of the migration law (which is assumed to have finite fifth moments). Then in one dimension, in two dimensions, and in three dimensions uniformly for Here C0 is a constant depending on the migration law, K0(y) is the Bessel function of the second kind of order zero, and are the eigenvalues of σ2. For symmetric nearest-neighbor migrations, in one dimension and log mi in two. For is known in one dimension and C0 does not appear. In two dimensions, These results extend and make more precise earlier work of Malécot, Weiss and Kimura and Nagylaki.


PRX Quantum ◽  
2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Jiří Guth Jarkovský ◽  
András Molnár ◽  
Norbert Schuch ◽  
J. Ignacio Cirac

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Boris Ponsioen ◽  
Fakher Assaad ◽  
Philippe Corboz

The excitation ansatz for tensor networks is a powerful tool for simulating the low-lying quasiparticle excitations above ground states of strongly correlated quantum many-body systems. Recently, the two-dimensional tensor network class of infinite projected entangled-pair states gained new ground state optimization methods based on automatic differentiation, which are at the same time highly accurate and simple to implement. Naturally, the question arises whether these new ideas can also be used to optimize the excitation ansatz, which has recently been implemented in two dimensions as well. In this paper, we describe a straightforward way to reimplement the framework for excitations using automatic differentiation, and demonstrate its performance for the Hubbard model at half filling.


2019 ◽  
Vol 177 (6) ◽  
pp. 1240-1262
Author(s):  
Edward Crane ◽  
Sean Ledger ◽  
Bálint Tóth

Abstract We introduce two discrete models of a collection of colliding particles with stored momentum and study the asymptotic growth of the mean-square displacement of an active particle. We prove that the models are superdiffusive in one dimension (with power law correction) and diffusive in three and higher dimensions. In two dimensions we demonstrate superdiffusivity (with logarithmic correction) for certain anisotropic initial conditions.


Sign in / Sign up

Export Citation Format

Share Document