SOME NOVEL EVOLUTIONAL BEHAVIORS OF LOCALIZED EXCITATIONS IN THE BOITI–LEON–MARTINA–PEMPINELLI SYSTEM

2008 ◽  
Vol 22 (06) ◽  
pp. 671-682 ◽  
Author(s):  
CHUN-LONG ZHENG ◽  
LI-QUN CHEN

Using an extended mapping approach and a special Painlevé–Bäcklund transformation, respectively, we obtain two families of exact solutions to the (2+1)-dimensional Boiti–Leon–Martina–Pempinelli (BLMP) system. In terms of the derived exact solution, we reveal some novel evolutional behaviors of localized excitations, i.e., fission, fusion, and annihilation phenomena in the (2+1)-dimensional BLMP system.

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Lin Jianming ◽  
Ding Jie ◽  
Yuan Wenjun

The Sharma-Tasso-Olver (STO) equation is investigated. The Painlevé analysis is efficiently used for analytic study of this equation. The Bäcklund transformations and some new exact solutions are formally derived.


2014 ◽  
Vol 945-949 ◽  
pp. 2430-2434
Author(s):  
Yan Lei ◽  
Song Hua Ma ◽  
Jian Ping Fang

Starting from an improved mapping approach and a linear variable separation approach, a series of exact solutions of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli system (BLMP) is derived. Based on the derived variable separated solution, we obtain some special localized excitations such as dromion, solitoff and chaotic patterns.


2009 ◽  
Vol 23 (19) ◽  
pp. 3931-3938 ◽  
Author(s):  
CHUN-LONG ZHENG ◽  
JIAN-FENG YE

Starting from a Painlevé–Bäcklund transformation, an exact variable separation solution with four arbitrary functions for the (2+1)-dimensional generalized Sasa–Satsuma (GSS) system are derived. Based on the derived exact solutions in the paper, some complex wave excitations in the (2+1)-dimensional GSS system and revealed, which describe solitons moving on a periodic wave background. Some interesting evolutional properties for these solitary waves propagating on the periodic wave background are also briefly discussed.


2005 ◽  
Vol 16 (03) ◽  
pp. 393-412 ◽  
Author(s):  
DENGSHAN WANG ◽  
HONG-QING ZHANG

In this paper, making use of the truncated Laurent series expansion method and symbolic computation we get the auto-Bäcklund transformation of the (2 + 1)-dimensional Nizhnik–Novikov–Veselov equation. As a result, single soliton solution, single soliton-like solution, multi-soliton solution, multi-soliton-like solution, the rational solution and other exact solutions of the (2 + 1)-dimensional Nizhnik–Novikov–Veselov equation are found. These solutions may be useful to explain some physical phenomena.


Sign in / Sign up

Export Citation Format

Share Document