TENSILE TEST BASED MATERIAL IDENTIFICATION PROGRAM AFDEX/MAT AND ITS APPLICATION TO TWO NEW PRE-HEAT TREATED STEELS AND A CONVENTIONAL Cr-Mo STEEL

2008 ◽  
Vol 22 (31n32) ◽  
pp. 5774-5779 ◽  
Author(s):  
MAN-SOO JOUN ◽  
JAE-GUN EOM ◽  
MIN-CHEOL LEE ◽  
JEONG-HWI PARK ◽  
DUK-JAE YOON

A material identification program AFDEX/MAT is presented in this paper. The program is based on the method for acquiring true stress-strain curves over large range of strains using engineering stress-strain curves obtained from a tensile test coupled with a finite element analysis. In the method, a tensile test is analyzed using a rigid-plastic finite element method combined with a perfect analysis model for its associated simple bar to provide the information of deformation. An initial reference true stress-strain curve, which predicts the necking point exactly, is modified iteratively to minimize the difference in tensile force between the experiments and predictions of the tensile test. It was applied to identifying the mechanical behaviors of two new pre-heat treated steels of ESW95 and ESW105 and a conventional Cr - Mo steel of SCM435. The predictions are compared with the experiments for the tensile test of the three materials, showing an excellent similarity.

2014 ◽  
Vol 907 ◽  
pp. 3-16
Author(s):  
Marion Merklein ◽  
Wolfgang Böhm

The Accumulative Roll Bonding (ARB) process enables the manufacturing of high strength sheet metals with outstanding mechanical properties by repeated rolling. However, the significant increase in strength leads to loss in ductility, especially regarding aluminum alloys of the 6000 series. The low formability obviously limits the implementation of these sheet products for formed components in automotive applications. To enhance formability, a local short term heat treatment according to the Tailored Heat Treated Blanks technology is used. For the finite element based design of forming operations accurate information about the plastic behavior of these tailored materials is required. Therefore, different stress - strain paths are considered using the tensile test and the layer compression test. In this context, heat treated and non-heat treated specimens out of ARB processed AA6016 were tested at room temperature. With the experimental results true stress strain curves and yield loci determined from different criteria and represented in a principal stress state were established. Regarding the experimental setup of the ARB process, an upscaling is essential for the production of sufficiently large strips to cut out blanks for the forming of components such as B-pillars. However, this requires the adaptation of the different process steps of the ARB process. In this context, the surface treatment before rolling of such large sheets is investigated, since it is particularly relevant for obtaining a strong bonding between the sheets. Another aspect is the investigation of the rolling process using the finite element analysis. In this regard, a thermal mechanical coupled simulation model of the roll bonding operation will be developed for the evaluation of different material combinations, different process temperatures and varying roller geometries. These investigations will enable the production of lightweight automotive components made of ARB processed high strength aluminum sheet metal with tailored properties.


Author(s):  
Nahuel Rull ◽  
Asanka Basnayake ◽  
Michael Heitzmann ◽  
Patricia M. Frontini

The mechanical behaviour of a high performance polycaprolactone based polyurethane elastomer (PCL) up to large strain levels, cyclic loading and equibiaxial stress has been assessed. The PCL can be categorised as a rubber-like material, thus, showing nonlinear stress-strain behaviour. The materials elastic network is based on a high molecular weight PCL polyol which gives the material its elastomeric behaviour similar to polyurethanes. In this work, mechanical testing capturing the major features of the stress-strain curve under different loading conditions is performed. Both, uni-axial loading-unloading curves and bulge test are thoroughly studied through the addition of digital image correlation (DIC) to measure the strain field. Results show the presence of hysteresis and loading configuration dependence. Then, two well-known hyperelastic constitutive models, the Arruda-Boyce eight-chain and Bergström-Boyce, were fitted to the uni-axial monotonic and cyclic test data and compared to the bulge test experimental results through finite element analysis (FEA) in Abaqus.


2004 ◽  
Vol 126 (1) ◽  
pp. 70-76 ◽  
Author(s):  
I. Scheider ◽  
W. Brocks ◽  
A. Cornec

The problem of determining true stress-strain curves from flat tensile specimens beyond the onset of necking has been investigated based on finite element analyses under consideration of experimental accessible data using digital image correlation (DIC). The displacement field on the specimen surface is determined by in-situ deformation field measurement. A three-dimensional finite element study with different stress-strain-curves has been carried out to develop a formula, with which it is possible to calculate the true stress subject to the strain in the necking region. The method has been used to evaluate the true stress-strain curve with a so-called micro flat tensile specimen, which is normally used to determine the material properties in the material gradient around thin weldments.


Author(s):  
M. Rudra Goud ◽  
C. Manjunatha ◽  
M. Venkateshwarlu ◽  
B. V. A. Patnaik

The service life of critical aerospace components is governed by the modes of degradation and failure such as: yielding, fatigue, fracture, creep, corrosion, wear, etc. A single disc is used for over-speed and burst-speed tests to know the growths (plastic deformation). In this paper, a cyclic symmetry sector of disc model with non linear elastic-plastic material is considered. A non-linear finite element method is utilized to determine the stress and strain state of the disc under over-speed and burst-speed conditions using material stress strain curves. Permanent growths and strains obtained from the over-speed analysis are incorporated in the burst-speed Finite element Model. The original stress strain curve used in over-speed analysis is modified with plastic strain and used in burst-speed analysis of same disc. Elastic strains obtained from the over-speed and burst-speed analysis are utilized in stress strain relationship equations to calculate the permanent growths at critical locations of disc. Growths predicted from Analysis are comparable with the experimental results of disc where a maximum variation of 11% at bore and rim of disc is observed.


2020 ◽  
Vol 55 (3-4) ◽  
pp. 99-108 ◽  
Author(s):  
Yunlu Zhang ◽  
Sreekar Karnati ◽  
Tan Pan ◽  
Frank Liou

The determination of constitutive relation from the miniature tensile test is of high interest in multiple areas. Here, a convenient experimental method is proposed to determine the true stress–strain curve from the miniature tensile test. The instantaneous cross-sectional area is estimated by only one camera in aid of digital image correlation technique. This method was applied on commercial pure titanium and aluminum 6061 alloys, and the results indicate that the extracted true stress–strain curves are not scale-dependent. The derived mechanical properties from miniature specimens match well with the results of standard specimens. The correctness of the true stress–strain curve was evaluated by the finite element analysis method. The results suggest that the derived true stress–strain curve is capable to represent the constitutive behavior of the tested materials.


Author(s):  
Pasqualino Corigliano

Industries have shown interest in the use of dissimilar metals to make corrosion-resistant materials combined with good mechanical properties in marine environments. Explosive welding can be considered a good method for joining dissimilar materials to prevent galvanic corrosion. The aim of the present study was to simulate the non-linear behaviour of a Ti6Al4V/Inconel 625 welded joint obtained by explosion welding from the values of the tensile ultimate strength and yielding strength of the parent materials. The present study compared the stress-strain curve from tensile loading obtained by the non-linear finite element analysis with the experimental stress-strain curve of a bimetallic joint. The applied method provides useful information for the development of models and the prediction of the structural behaviour of Ti6Al4V/Inconel 625 explosive welded joints.


2021 ◽  
Author(s):  
Ming Song ◽  
Xuyang Li ◽  
Wenchun Jiang ◽  
Jiru Zhong ◽  
Kaishu Guan

Abstract Evaluating the strength properties of materials of an in-service pipeline without shutting down transportation has been always a challenge. A novel and non-destructive method for determining the true stress-strain curve of pipeline steel based on backpropagation artificial neural network and small punch test is proposed in this study. The elastoplastic mechanical properties of the pipeline steels could be obtained by this method. The load-displacement curves of 2261 groups of different hypothetical materials were obtained by the finite element model of small punch test within Gurson-Tvergaard-Needleman (GTN) damage parameters and used to train the neural network. The relationship between the load-displacement curve of small punch test and the true stress-strain curve of the conventional uniaxial tensile test was established based on the trained neural network. The accuracy and wide applicability of the trained neural network were verified by the experimental data of four types of materials obtained by small punch test and standard tensile test, respectively. The established relationship can be used to predict the true stress-strain curve of the pipeline steels to determine the elastoplastic mechanical properties only by the load-displacement curve of the small punch test without performing the conventional tensile test.


Sign in / Sign up

Export Citation Format

Share Document