ENTANGLEMENT OF A GENERAL FORMALISM Ξ-TYPE THREE-LEVEL ATOM INTERACTING WITH A SINGLE-MODE FIELD IN THE PRESENCE OF NONLINEARITIES

2009 ◽  
Vol 23 (09) ◽  
pp. 2269-2283 ◽  
Author(s):  
A.-S. F. OBADA ◽  
A. A. EIED ◽  
G. M. ABD AL-KADER

We investigate the evolution of the atomic quantum entropy and the atom-field entanglement in a system of a Ξ-configuration three-level atom interacting with a single-mode field with additional forms of nonlinearities of both the field and the intensity-dependent atom-field coupling. With the derivation of the unitary operator within the frame of the dressed state and the exact results for the state of the system, we perform a careful investigation of the temporal evolution of the entropy. A factorization of the initial density operator is assumed, considering the field to be initially in a squeezed coherent or binomial state. The effects of the mean photon number, detuning, Kerr-like medium and the intensity-dependent coupling functional on the entropy are analyzed.

2009 ◽  
Vol 23 (15) ◽  
pp. 3241-3254 ◽  
Author(s):  
A.-S. F. OBADA ◽  
A. A. EIED ◽  
G. M. ABD AL-KADER

We investigate the evolution of the atomic quantum entropy and the atom–field entanglement in a system of a Λ-configuration three-level atom interacting with a single-mode field with additional forms of nonlinearities of both the field and the intensity-dependent atom–field coupling. With the derivation of the unitary operator within the frame of the dressed state and the exact results for the state of the system, we perform a careful investigation of the temporal evolution of the entropy. A factorization of the initial density operator is assumed, considering the field to be initially in a squeezed coherent or binomial state. The effects of the mean photon number, detuning, Kerr-like medium, and the intensity-dependent coupling functional on the entropy are analyzed.


2004 ◽  
Vol 18 (20n21) ◽  
pp. 2901-2914
Author(s):  
R. A. ZAIT

We study the interaction of a moving four-level atom with a single mode cavity field. Involving intensity dependent coupling, the atom-field wave function and the reduced density matrix of the field are obtained when the atom is initially prepared in a coherent superposition of the upper and ground states and the field is initially in a coherent state. The influence of the intensity dependent atom-field coupling and of the detuning on the collapse and revival phenomenon of the time evolution of statistical aspects, such as the mean photon number, the second-order correlation function of the field, the momentum increment and momentum diffusion, are investigated. It is found that, for the nonresonant case, the detuning between the field and the atom has a significant influence which leads to increasing the collapse time with decreasing amplitude. Numerical computations and discussion of the results are presented.


2011 ◽  
Vol 2011 ◽  
pp. 1-11
Author(s):  
F. K. Faramawy

We study the interaction of a three-level atom with a single mode field through multiphoton transition in a cavity, taking explicitly into account the existence of forms of nonlinearities of both the field and the intensity-dependent atom-field coupling. The analytical forms of the absorption spectrum is calculated using the dressed states of the system. The effects of photon multiplicities, mean photon number, detuning, Kerr-like medium, and the intensity-dependent coupling functional on the absorption spectrum are analyzed.


2015 ◽  
Vol 29 (29) ◽  
pp. 1550175 ◽  
Author(s):  
N. H. Abd El-Wahab ◽  
Ahmed Salah

We study the interaction between a single mode electromagnetic field and a three-level [Formula: see text]-type atom in the presence of a classical homogenous gravitational field when the atom is prepared initially in the momentum eigenstate. The model includes the detuning parameters and the classical homogenous gravitational field. The wave function is calculated by using the Schrödinger equation for a coherent electromagnetic field and an atom is in its excited state. The influence of the detuning parameter and the classical homogenous gravitational field on the temporal behavior of the mean photon number, the normalized second-order correlation function and the normal squeezing is analyzed. The results show that the presence of these parameters has an important effect on these phenomena. The conclusion is reached and some features are given.


2006 ◽  
Vol 20 (11n13) ◽  
pp. 1269-1279
Author(s):  
GAMAL M. ABD AL-KADER

The properties of the displaced Fock states (DFS's) superpositions are reviewed. The interaction of these states with a two-level atom in cavity with the presence of additional Kerr medium is studied. Exact general matrix elements of the time-dependent operators of a Jaynes-Cummings model (JCM), in the presence of a Kerr medium, with these states are derived. The atomic inversion and photon number distribution are discussed. The quantum entropy and the entanglement of the atom-field are investigated. The exact results are employed to perform a careful investigation of the temporal evolution of the entropy. The connection between the field entropy and the collapses and revivals of the atomic inversion has been established. The general conclusions reached are illustrated by numerical results.


2015 ◽  
Vol 93 (11) ◽  
pp. 1375-1381
Author(s):  
A.A. Eied

A treatment of a multi-photon Ξ-type three-level atom interacting with a single-mode field in a cavity, taking explicitly the existence of forms of nonlinearities of both the field and the intensity-dependent atom–field coupling into account. Analytical expressions of the emission spectrum are presented using the dressed states of the system. The characteristics of the emission spectrum, considering the field to be initially in a binomial state, are exhibited. The effects of the photon multiplicities, mean number of photons, detuning, and the nonlinearities on the spectrum are investigated.


2011 ◽  
Vol 25 (20) ◽  
pp. 2681-2696 ◽  
Author(s):  
S. R. J. PATRICK ◽  
YANG YANG ◽  
ZHANG-QI YIN ◽  
FU-LI LI

We consider a system consisting of two multiple two-level-atom clusters simultaneously interacting with a single-mode cavity field. Entanglement of the two clusters is investigated by use of the negativity measure. We find that the entanglement can be not only induced by a thermal field but also enhanced by increasing the mean thermal photon number.


1999 ◽  
Vol 13 (05) ◽  
pp. 143-152 ◽  
Author(s):  
AMITABH JOSHI ◽  
HO TRUNG DUNG

The number-phase Wigner function W NP (defined in Refs. 3 and 4) has been studied for the field state of a two-level atom undergoing two-photon transition in a single mode field sustained in an ideal cavity. The photon number and the phase observables are graphically represented by this function W NP and thus their complementarity can be directly studied at any time for any initial atomic as well as field state.


Sign in / Sign up

Export Citation Format

Share Document