UNUSUAL QUANTUM HALL EFFECTS, INDEX THEOREM AND SUPERSYMMETRY IN GRAPHENE

2009 ◽  
Vol 23 (23) ◽  
pp. 4801-4808 ◽  
Author(s):  
K.-S. PARK ◽  
K. S. YI

We exploit an index theorem and a high degree of symmetry to understand unusual quantum Hall effects of the n = 0 Landau level in graphene. The high symmetry such as the pseudospin symmetry of Fermi points in a graphene sheet cannot couple to an external magnetic field. In the absence of the magnetic field, the index theorem provides a relation between the zero-energy state of the graphene sheet and the topological deformation of the compact lattice. Under the topological deformation, the zero-energy state emerges naturally without the Zeeman splitting at the Fermi points in the graphene sheet. This results in the fact that the pseudospin is an exact symmetry. In the case of nonzero energy, the up-spin and down-spin states have the exact high symmetry of spin, forming the pseudospin singlet pairing. We describe the peculiar and unconventional quantum Hall effects of the n = 0 Landau level in graphene on the basis of the index theorem and the high degree of symmetry.

2020 ◽  
Vol 6 (26) ◽  
pp. eaba4625
Author(s):  
Saquib Shamim ◽  
Wouter Beugeling ◽  
Jan Böttcher ◽  
Pragya Shekhar ◽  
Andreas Budewitz ◽  
...  

The realization of the quantum spin Hall effect in HgTe quantum wells has led to the development of topological materials, which, in combination with magnetism and superconductivity, are predicted to host chiral Majorana fermions. However, the large magnetization in conventional quantum anomalous Hall systems makes it challenging to induce superconductivity. Here, we report two different emergent quantum Hall effects in (Hg,Mn)Te quantum wells. First, a previously unidentified quantum Hall state emerges from the quantum spin Hall state at an exceptionally low magnetic field of ~50 mT. Second, tuning toward the bulk p-regime, we resolve quantum Hall plateaus at fields as low as 20 to 30 mT, where transport is dominated by a van Hove singularity in the valence band. These emergent quantum Hall phenomena rely critically on the topological band structure of HgTe, and their occurrence at very low fields makes them an ideal candidate for realizing chiral Majorana fermions.


2013 ◽  
Vol 3 ◽  
pp. 87-88
Author(s):  
Laxmi Nath Bhattarai

Graphene is a two dimensional one atom thick allotrope of Carbon. Electrons in grapheme behave as massless relativistic particles. It is a 2 dimensional nanomaterial with many peculiar properties. In grapheme both integral and fractional quantum Hall effects are observed. Many practical application are seen from use of Graphene material.The Himalayan PhysicsVol. 3, No. 3, July 2012Page: 87-88


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Shuai Li ◽  
C. M. Wang ◽  
Z. Z. Du ◽  
Fang Qin ◽  
Hai-Zhou Lu ◽  
...  

AbstractThe classical and quantum Hall effects are important subjects in condensed matter physics. The emergent 3D quantum Hall effects and nonlinear Hall effect have attracted considerable interest recently, with the former elevating the quantum Hall effect to a higher dimension and the latter extending the Hall effect to higher-order responses. In this perspective, we briefly introduce these two new members of the Hall family and discuss the open questions and future research directions.


Quantum 20/20 ◽  
2019 ◽  
pp. 303-322
Author(s):  
Ian R. Kenyon

It is explained how plateaux are seen in the Hall conductance of two dimensional electron gases, at cryogenic temperatures, when the magnetic field is scanned from zero to ~10T. On a Hall plateau σ‎xy = ne 2/h, where n is integral, while the longitudinal conductance vanishes. This is the integral quantum Hall effect. Free electrons in such devices are shown to occupy quantized Landau levels, analogous to classical cyclotron orbits. The stability of the IQHE is shown to be associated with a mobility gap rather than an energy gap. The analysis showing the topological origin of the IQHE is reproduced. Next the fractional QHE is described: Laughlin’s explanation in terms of an IQHE of quasiparticles is presented. In the absence of any magnetic field, the quantum spin Hall effect is observed, and described here. Time reversal invariance and Kramer pairs are seen to be underlying requirements. It’s topological origin is outlined.


Sign in / Sign up

Export Citation Format

Share Document