GRAIN BOUNDARY WETTING AND SOLIDIFICATION OF CONSTITUTIONAL LIQUID IN AZ91 MG CAST ALLOY

2010 ◽  
Vol 24 (15n16) ◽  
pp. 2249-2254 ◽  
Author(s):  
TIANPING ZHU ◽  
ZHAN W. CHEN ◽  
WEI GAO

In this study, constitutional liquation in AZ91 cast alloy at 440°C and 465°C was experimentally simulated. Metallurgical examination was conducted to reveal the morphology of the constitutional liquid and dihedral angle was measured to evaluate the wettability of the liquid on grain boundary. Dihedral angle was found to be initially ~30 degree and thus grain boundaries were incomplete wet. During annealing, the metastable constitutional liquid resolidified, followed by grain growth. The extent of grain boundary wetting by the remaining liquid increased slightly with treating time. The rate of resolidification was also evaluated and the factors affecting this rate were discussed.

1991 ◽  
Vol 238 ◽  
Author(s):  
Douglas E. Meyers ◽  
Alan J. Ardell

ABSTRACTThe results of our initial efforts at measuring the fracture strengths of grain boundaries In Ni3Al using a miniaturized disk-bend test are presented. The samples tested were 3 mm in diameter and between 150 and 300 μm thick. An Ingot of directlonally-solidlfled, boron-free Ni3Al containing 24% Al was annealed between 1300 and 1350 °C to induce grain growth, producing many grain boundaries In excess of 1.5 mm in length. Specimens were cut from these In such a way that one long grain boundary was located near a diameter of the specimen. The relative orientations of the grains on either side of the boundary were determined from electron channeling patterns. Low-angle boundaries are so strong they do not fracture; Instead the samples deform In a completely ductile manner. High-angle boundaries always fracture, but only after considerable plastic deformation of the two grains flanking them. Fracture is Indicated by a load drop in the load vs. displacement curves. A method involving extrapolation of the elastic portion of these curves to the displacement at fracture is used to estimate the fracture stresses. This procedure yields consistent values of the fracture strengths of high-angle boundaries. The measured stresses are large (∼2 to 3 GPa), but considerably smaller than those required for the fracture of special boundaries, as predicted by computer simulations. No correlation was found between the fracture stresses or loads and the geometry of the high-angle boundaries, many of which are close to, but deviate from, coincident site lattice orientations.


Author(s):  
Mohammad Ali Mohtadi Bonab

The demand for pipeline steels has increased in the last several decades since they were able to provide an immune and economical way to carry oil and natural gas over long distances. There are two important damage modes in pipeline steels including stress corrosion cracking (SCC) and hydrogen induced cracking (HIC). The SCC cracks are those cracks which are induced due to the combined effects of a corrosive environment and sustained tensile stress. The present review article is an attempt to highlight important factors affecting the SCC in pipeline steels. Based on a literature survey, it is concluded that many factors, such as microstructure of steel, residual stresses, chemical Composition of steel, applied load, alternating current (AC) current and texture, and grain boundary character affect the SCC crack initiation and propagation in pipeline steels. It is also found that crystallographic texture plays a key role in crack propagation. Grain boundaries associated with {111}//rolling plane, {110}//rolling plane, coincidence site lattice boundaries and low angle grain boundaries are recognized as crack resistant paths while grains with high angle grain boundaries provide easy path for the SCC intergranular crack propagation. Finally, the SCC resistance in pipeline steels is improved by modifying the microstructure of steel or controlling the texture and grain boundary character.


2020 ◽  
Vol 272 ◽  
pp. 127730 ◽  
Author(s):  
Ivan Mazilkin ◽  
Kristina Tsoy ◽  
Alexander Straumal ◽  
Alexey Rodin ◽  
Brigitte Baretzky

2006 ◽  
Vol 976 ◽  
Author(s):  
Bryan Miller ◽  
Jamey Fenske ◽  
Dong Su ◽  
Chung-Ming Li ◽  
Lisa Dougherty ◽  
...  

AbstractDeformation experiments at temperatures between 300 and 750 K have been performed in situ in the transmission electron microscope to investigate dislocation interactions and reactions with grain boundaries and other obstacles. Dislocations, both partial and perfect, as well as deformation twins have been observed being emitted from grain boundaries and, in some cases, even the same grain boundary. The ejection of dislocations from the grain boundary can result in its partial or total annihilation. In the latter case, the disintegration of the grain boundary was accompanied by grain growth and a change in misorientation.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1254
Author(s):  
Zhenghua He ◽  
Yuhui Sha ◽  
Ning Shan ◽  
Yongkuang Gao ◽  
Fan Lei ◽  
...  

Secondary recrystallization Goss texture was efficiently achieved in rolled, binary Fe81Ga19 alloy sheets without the traditional dependence on inhibitors and the surface energy effect. The development of abnormal grain growth (AGG) of Goss grains was analyzed by quasi-situ electron backscatter diffraction (EBSD). The special primary recrystallization texture with strong {112}–{111}<110> and weak Goss texture provides the inherent pinning effect for normal grain growth by a large number of low angle grain boundaries (<15°) and very high angle grain boundaries (>45°) according to the calculation of misorientation angle distribution. The evolution of grain orientation and grain boundary characteristic indicates that the higher fraction of high energy grain boundaries (20–45°) around primary Goss grains supplies a relative advantage in grain boundary mobility from 950 °C to 1000 °C. The secondary recrystallization in binary Fe81Ga19 alloy is realized in terms of the controllable grain boundary mobility difference between Goss and matrix grains, coupled with the orientation and misorientation angle distribution of adjacent matrix grains.


2004 ◽  
Vol 467-470 ◽  
pp. 763-770 ◽  
Author(s):  
P.J. Konijnenberg ◽  
Dmitri A. Molodov ◽  
Günter Gottstein

In magnetically anisotropic materials a driving force for grain boundary migration can be induced by an external magnetic ¯eld. It is experimentally shown that annealing of locally deformed Zn single crystals in a suitably directed high magnetic ¯eld results in a growth of new individual grains. Velocities of some solitary moving grain boundaries were measured and their absolute mobilities were estimated at a single temperature. Results are discussed in terms of preferential grain orientation and boundary character.


2014 ◽  
Vol 616 ◽  
pp. 8-13
Author(s):  
Koji Matsui ◽  
Hidehiro Yoshida ◽  
Yuichi Ikuhara

We systematically investigated the phase transformation and grain-growth behaviors during sintering in 2 and 3 mol% Y2O3-stabilized tetragonal ZrO2 (2Y and 3Y) and 8 mol% Y2O3-stabilized cubic ZrO2 polycrystals (8Y). In particular, grain-boundary segregation and grain-interior distribution of Y3+ ions were examined by high-resolution transmission electron microscopy (HRTEM)- and scanning transmission electron microscopy (STEM)-nanoprobe X-ray energy dispersive spectroscopy (EDS) techniques. Above 1200°C, grain growth during sintering in 8Y was much faster than that in 2Y and 3Y. In the grain boundaries in these specimens, amorphous layers did not present; however, Y3+ ions segregated at the grain boundaries over a width of about 10 nm. The amount of segregated Y3+ ions in 8Y was significantly less than in 2Y and 3Y. This indicates that the amount of segregated Y3+ ions is related to grain growth behavior; i.e., an increase in segregated Y3+ ions retards grain growth. Therefore, grain-growth behavior during sintering can be reasonably explained by the solute-drag mechanism of Y3+ ions segregating along the grain boundary. In 2Y and 3Y, the cubic-phase regions were formed in grain interiors adjacent to the grain boundaries and/or the multiple junctions in which Y3+ ions segregated, which can be explained by a grain boundary segregation-induced phase transformation (GBSIPT) mechanism.


Sign in / Sign up

Export Citation Format

Share Document