A STUDY ON FRETTING FATIGUE LIFE IN ELEVATED TEMPERATURE FOR INCOLOY 800

2010 ◽  
Vol 24 (15n16) ◽  
pp. 2561-2566
Author(s):  
JAE DO KWON ◽  
SEUNG WAN WOO ◽  
IL SUP CHUNG ◽  
DONG HWAN YOON ◽  
DAE KYU PARK

Incoloy 800, which is used within steam generator tubes, is a heat resistant material since it is an iron-nickel-chromium alloy. However, construction of a systematic database is needed to receive integrity data defecting insurance of specific data about room and elevated temperature fretting fatigue behavior for Incoloy 800. Accordingly, this study investigates the specific change in fatigue limitations under the condition of the fretting fatigue as compared to that under the condition of the plain fatigue by performing plain and fretting fatigue tests on Incoloy 800 at 320°C, real operating temperature and at room-temperature, respectively. The change in the frictional force is measured during the fretting fatigue testing against the repeated cycle, and the mechanism of fretting fatigue is investigated through the observation of the fatigue-fracture surface.

2011 ◽  
Vol 2 (1) ◽  
pp. 2-11
Author(s):  
R. Hojjati Talemi ◽  
M. Soori ◽  
M. Abdel Wahab ◽  
Patrick De Baets

t Fretting fatigue damage occurs in contacting parts when they are subjected to fluctuating loadingsand sliding movements at the same time. This phenomenon may occur in many applications such asbearings/ shafts, bolted and riveted connections, steel cables, and steam and gas turbines. In this paper,the effect of elevated temperature on fretting fatigue life of Al7075-T6 is investigated using a new device forfretting fatigue tests with variable crank shaft mechanism. Also a finite element modeling method was usedto estimate crack propagation lifetime in aluminum alloy, Al7075-T6 specimens at elevated temperatureunder fretting condition. In this method, shear and normal stresses that are caused by contact load areupdated at each crack growth increment. Finally, a comparison between the experimental and numericalresults is done in order to evaluate the FE simulation.Department of mechanical engineering, Islamic Azad University, Takestan Branch, Takestan, IranThe experimental results show that: (i) fretting fatigue life of the material increases with temperature up to350°C by 180% for low stresses and decreases by 40% for high stresses, (ii) this fashion of variation offretting fatigue life versus temperature is believed to be due to degradation of material properties whichoccurs by overaging and wear resistance increase due to oxidation of aluminum alloy. While overaginggives rise to degradation of mechanical strength of material and hence the reduction of its fretting fatiguelife, surface oxidation of the specimens brings some improvement of fatigue behavior of the material.Metallurgical examination of the specimens reveals that temperature results in precipitation of impurities ofal-7075-T6. The size of precipitated impurities and their distances gets bigger as temperature increases.This could be a reason for material degradation of specimens which are exposed to heating for longer timeduration.


2007 ◽  
Vol 353-358 ◽  
pp. 89-93 ◽  
Author(s):  
Dae Kyu Park ◽  
Seung Wan Woo ◽  
Yong Tak Bae ◽  
Il Sup Chung ◽  
Young Suck Chai ◽  
...  

Mechanical breakdown often comes from the fatigue in many structural parts and nuclear power plants. Among the fatigue phenomenon, especially fretting fatigue occurs in mechanical joints showing small relative movements between contact surfaces. Although the research was developed for one hundred years, occurrence mechanism is not clearly identified yet. INCOLOY alloy 800 is a iron-nickel-chromium alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. This alloy is used extensively in the nuclear power plants industry, the chemical industry, the heat-treating industry and the electronic industry. In this paper, the effect of fretting damage on fatigue behavior for INCOLOY alloy 800 was studied. Also, various kinds of mechanical tests such as tension and plain fatigue tests are performed. Fretting fatigue tests were carried out with flat-flat contact configuration using a bridge type contact pad and plate type specimen. Through these experiments, it is found that the fretting fatigue strength decreased about 50% compared to the plain fatigue strength. In fretting fatigue, the oblique micro-cracks at an earlier stage are initiated. These results can be used as basic data in a structural integrity evaluation of heat and corrosion resisting alloy considering fretting damages.


Alloy Digest ◽  
1965 ◽  
Vol 14 (9) ◽  

Abstract SANDVIK SANICRO 31 is an iron-nickel-chromium alloy having good resistance to corrosion and oxidation and good mechanical properties at elevated temperatures. It is recommended for electrical sheathing, pyrometer tubes, equipment for heat treating and furnace tubes and other equipment in the petrochemical industry. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-172. Producer or source: Sandvik.


2016 ◽  
Vol 17 ◽  
pp. 14-30 ◽  
Author(s):  
Okechukwu P. Nwachukwu ◽  
Alexander V. Gridasov ◽  
Ekaterina A. Gridasova

This review looks into the state of gigacycle fatigue behavior of some structural materials used in engineering works. Particular attention is given to the use of ultrasonic fatigue testing machine (USF-2000) due to its important role in conducting gigacycle fatigue tests. Gigacycle fatigue behavior of most materials used for very long life engineering applications is reviewed.Gigacycle fatigue behavior of magnesium alloys, aluminum alloys, titanium alloys, spheroid graphite cast iron, steels and nickel alloys are reviewed together with the examination of the most common material defects that initiate gigacycle fatigue failures in these materials. In addition, the stage-by-stage fatigue crack developments in the gigacycle regime are reviewed. This review is concluded by suggesting the directions for future works in gigacycle fatigue.


2019 ◽  
Vol 809 ◽  
pp. 341-346 ◽  
Author(s):  
Torsten Thäsler ◽  
Jens Holtmannspötter ◽  
Hans Joachim Gudladt

The surface condition of carbon fibre reinforced plastic (CFRP) substrates is decisive to obtain high bond strength and lifetime of adhesively bonded parts. Those surfaces were adjusted in terms of their microscopic topography by means of peel plies and release foils. The subsequent surface treatment via atmospheric pressure plasma jet or vacuum blasting allowed the modification of the microscopic roughness as well as the surface chemistry. Those configuration were assessed using surface analytic methods as well as quasi-static and cyclic fracture tests on single lap shear specimens. The microscopic surface roughness, if at all, only showed a small influence on the bond strength. Despite release agent residues, fracture was found within the fiber-matrix interface, which caused difficulties in evaluating the effect of surface pretreatments on the adhesion strength. Fatigue tests revealed a lifetime reduction of uneven microscopic rough surfaces, which was assigned to stress concentrations at the tip of asperities. The crack propagation was accelerated in case of release agent residues. If surfaces were free of contaminations, no differences between microscopically smooth and slightly structured surfaces were found. Overall, fatigue testing on single lap shear specimens showed an increased sensitivity with regard to the assessment of surface morphology.


1984 ◽  
Vol 106 (2) ◽  
pp. 178-183 ◽  
Author(s):  
C. E. Price ◽  
J. K. Good

The fatigue lifetimes and fractography were compared for nickel and typical nickel base alloys of the Monel, Inconel, and Incoloy series, tested at room temperature in alternating tension in the environments of air and liquid mercury. It was found that the fatigue life was always less in mercury and that a different fracture mode resulted. The alloys Nickel 200, Inconel 600, Incoloy 800, and Incoloy 825 that did not show intergranular fractures in the slow strain-rate tensile tests, did so under fatigue testing. A generalized crack propagation sequence in mercury was identified beginning with intergranular cracking but transferring eventually to transgranular modes.


Sign in / Sign up

Export Citation Format

Share Document