scholarly journals OBSERVER INVARIANCE OF THE COLLAPSE POSTULATE OF QUANTUM MECHANICS

2012 ◽  
Vol 27 (01n03) ◽  
pp. 1345013 ◽  
Author(s):  
MILTON A. DA SILVA ◽  
ROBERTO M. SERRA ◽  
LUCAS C. CÉLERI

We analyze the wave function collapse as seen by two distinct observers (with identical detectors) in relative motion. Imposing that the measurement process demands information transfer from the system to the detectors, we note that although different observers will acquire different amount of information from their measurements due to correlations between spin and momentum variables, all of them will agree about the orthogonality of the outcomes, as defined by their own reference frame. So, in this sense, such a quantum mechanical postulate is observer invariant, however the effective efficiency of the measurement process differs for each observer.

Author(s):  
Jeffrey A. Barrett

Moving to more subtle experiments, we consider how the standard formulation of quantum mechanics predicts and explains interference phenomena. Tracking the conditions under which one observes interference phenomena leads to the notion of quantum decoherence. We see why one must sharply distinguish between collapse phenomena and decoherence phenomena on the standard formulation of quantum mechanics. While collapses explain determinate measurement records, environmental decoherence just produces more complex, entangled states where the physical systems involved lack ordinary physical properties. We characterize the quantum-mechanical wave function as both an element of a Hilbert space and a complex-valued function over a configuration space. We also discuss how the wave function is interpreted in the standard theory.


2020 ◽  
Vol 24 (1) ◽  
pp. 51-63
Author(s):  
Kunihisa Morita

This study posits that Bohr failed to defend the completeness of the quantum mechanical description of physical reality against Einstein–Podolsky–Rosen’s (EPR) paper. Although there are many papers in the literature that focus on Bohr’s argument in his reply to the EPR paper, the purpose of the current paper is not to clarify Bohr’s argument. Instead, I contend that regardless of which interpretation of Bohr’s argument is correct, his defense of the quantum mechanical description of physical reality remained incomplete. For example, a recent trend in studies of Bohr’s work is to suggest he considered the wave-function description to be epistemic. However, such an interpretation cannot be used to defend the completeness of the quantum mechanical description.


2016 ◽  
Vol 14 (06) ◽  
pp. 1640030
Author(s):  
Partha Ghose

An overview is given of the nature of the quantum mechanical wave function.


2009 ◽  
Vol 21 (02) ◽  
pp. 155-227 ◽  
Author(s):  
RODERICH TUMULKA

The Ghirardi–Rimini–Weber (GRW) theory is a physical theory that, when combined with a suitable ontology, provides an explanation of quantum mechanics. The so-called collapse of the wave function is problematic in conventional quantum theory but not in the GRW theory, in which it is governed by a stochastic law. A possible ontology is the flash ontology, according to which matter consists of random points in space-time, called flashes. The joint distribution of these points, a point process in space-time, is the topic of this work. The mathematical results concern mainly the existence and uniqueness of this distribution for several variants of the theory. Particular attention is paid to the relativistic version of the GRW theory that was developed in 2004.


2019 ◽  
Vol 15 ◽  
pp. 6039-6055
Author(s):  
Antonio Puccini

We learn from Quantum Mechanics that the observation of the microscopic world, the measurement (M) of a quantum object, i.e. a particle, inexorably modifies the physical system we wish to examine. What happens is that with the M it takes place a reduction of the state vectors, that is the ‘wave function collapse’ of the measured particle. Why does it happen? No one knows. The enigma of the so-called Measurement Paradox, in our opinion, could be solved if we considered that the light quantum(LQ), as suggested by the Principle of Equivalence Mass-Energy, carries out a dynamic-mass equivalent to its energy. The LQ is indispensable to carry out a M.  No M can be carried out without using the quantum of light. Calculus show that a photon of the optic band hits an electron with a momentum bigger than the mass of the electron itself. This may explain why the M induces the implosion of the quantum object observed, together with the collapse of its wave function, giving rise to the Measurement Paradox.


1993 ◽  
Vol 46 (1) ◽  
pp. 77 ◽  
Author(s):  
DT Pegg

Wave function collapse has been a contentious concept in quantum mechanics for a considerable time. Here we show examples of how the concept can be used to advantage in predicting the statistical results of three experiments in atomic physics and quantum optics: photon antibunching, single-photon phase difference states and interrupted single-atom fluorescence. We examine the question of whether or not collapse is 'really' a physical process, and discuss the consequences of simply omitting it but including the observer as a part of the overall system governed by the laws of quantum mechanics. The resulting entangled world does not appear to be inconsistent with experience.


Sign in / Sign up

Export Citation Format

Share Document