Enhancement of thermoelectric power factor by Si:B addition to higher manganese silicide film

2014 ◽  
Vol 28 (26) ◽  
pp. 1450181 ◽  
Author(s):  
Q. R. Hou ◽  
B. F. Gu ◽  
Y. B. Chen

Higher manganese silicide film ( HMS , MnSi x, x = 1.73–1.75) with addition of Si : B has been prepared on quartz substrate ( SiO 2) by magnetron sputtering of MnSi 2 and Si : B (1 at.% B content) targets. It is found that the Si : B -added HMS film has a much lower electrical resistivity (R) but maintains its high Seebeck coefficient (S). As a result, the thermoelectric power factor, PF = S2/R, is greatly enhanced. It is also found that the metal In together with Ag -paste can be used as ohmic contact materials for measuring the electrical properties of the HMS film. The thermoelectric power factor can reach 1255 μW/m-K2 at 733 K for the Si : B -added HMS film, which is about two times higher than that of the pure HMS film.

2014 ◽  
Vol 28 (11) ◽  
pp. 1450087
Author(s):  
Q. R. Hou ◽  
B. F. Gu ◽  
Y. B. Chen

The influence of an AlO x oxide or Si interlayer on the thermoelectric power factor of the higher manganese silicide (HMS, MnSi y, y = 1.73–1.75) film deposited on quartz substrate is investigated. The HMS film and the interlayer are prepared on quartz substrate by magnetron sputtering of MnSi 2, Al , Si and Si : B (1 at.% B content) targets. It is found that the metallic phase MnSi is present in the semiconducting HMS film without an interlayer, resulting in a lower Seebeck coefficient, 0.160 mV/K, but not a lower electrical resistivity, 0.021 Ω ⋅cm at 683 K. The thermoelectric power factor is only 122 × 10-6 W/mK2 at 683 K. On the other hand, the metallic phase MnSi disappears and the Seebeck coefficient restores to its high value after using the AlO x oxide or Si interlayer. Besides, the electrical resistivity decreases by using the AlO x oxide or Si : B interlayer. The HMS film with an Si : B interlayer has the highest Seebeck coefficient, 0.247 mV/K, and the lowest electrical resistivity, 0.011 Ω ⋅cm, at 683 K. Thus, the thermoelectric power factor is enhanced and can reach 555 × 10-6 W/mK2 at 683 K.


2020 ◽  
Vol 8 (27) ◽  
pp. 13600-13609 ◽  
Author(s):  
Xin Guan ◽  
Erol Yildirim ◽  
Zeng Fan ◽  
Wanheng Lu ◽  
Bichen Li ◽  
...  

Coating with Rhodamine 101 can significantly enhance the Seebeck coefficient of PEDOT:PSS, and surface energy filtering is proposed to be the reason for this effect.


2021 ◽  
pp. 102493
Author(s):  
M.A. Gharavi ◽  
D. Gambino ◽  
A. le Febvrier ◽  
F. Eriksson ◽  
R. Armiento ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natsumi Komatsu ◽  
Yota Ichinose ◽  
Oliver S. Dewey ◽  
Lauren W. Taylor ◽  
Mitchell A. Trafford ◽  
...  

AbstractLow-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advantages such as flexibility and light weight. However, preserving the large power factor of individual carbon nanotubes in macroscopic assemblies has been challenging, primarily due to poor sample morphology and a lack of proper Fermi energy tuning. Here, we report an ultrahigh value of power factor (14 ± 5 mW m−1 K−2) for macroscopic weavable fibers of aligned carbon nanotubes with ultrahigh electrical and thermal conductivity. The observed giant power factor originates from the ultrahigh electrical conductivity achieved through excellent sample morphology, combined with an enhanced Seebeck coefficient through Fermi energy tuning. We fabricate a textile thermoelectric generator based on these carbon nanotube fibers, which demonstrates high thermoelectric performance, weavability, and scalability. The giant power factor we observe make these fibers strong candidates for the emerging field of thermoelectric active cooling, which requires a large thermoelectric power factor and a large thermal conductivity at the same time.


2021 ◽  
Vol 721 ◽  
pp. 138537
Author(s):  
Anh Tuan Thanh Pham ◽  
Phuong Thanh Ngoc Vo ◽  
Hanh Kieu Thi Ta ◽  
Hoa Thi Lai ◽  
Vinh Cao Tran ◽  
...  

2015 ◽  
Vol 3 (40) ◽  
pp. 10500-10508 ◽  
Author(s):  
Xi Chen ◽  
Jianshi Zhou ◽  
John B. Goodenough ◽  
Li Shi

A rhenium-substituted HMS sample with small islands of MnSi secondary phase has been prepared by the quenching method. Such unique microstructure leads to an enhanced thermoelectric power factor (PF) as compared to the samples prepared by other methods.


2010 ◽  
Vol 434-435 ◽  
pp. 393-396 ◽  
Author(s):  
Ying Song ◽  
Qiu Sun ◽  
Li Rong Zhao ◽  
Fu Ping Wang

A series of polycrystalline (Ca1-xBix)3Co4O9 ( x = 0.0 ~ 0.075 ) powders were synthesized rapidly by a polyacrylamide gel method. The dense ceramics were fabricated using the spark plasma sintering ( SPS ) technique. Effects of Bi substitution on high temperature thermoelectric properties of Ca3Co4O9 were evaluated. Both the electrical conductivity and Seebeck coefficient increased with increasing Bi content up to x = 0.05, thus leading to an enhanced thermoelectric power factor. The Bi substituted sample with x = 0.05 obtained in this study has the highest thermoelectric power factor in the measured temperature range. It reaches 4.810-4 Wm-1K-2 at 700 °C, which is 26 % higher than that of Ca3Co4O9 without Bi substitution, and is by up to 15 % larger as compared to the Bi substituted sample synthesized by the solid state reaction method and the SPS technique due to the high chemical homogeneous powder prepared by the polyacrylamide gel method.


2014 ◽  
Vol 104 (1) ◽  
pp. 013904 ◽  
Author(s):  
T. H. Zou ◽  
X. Y. Qin ◽  
D. Li ◽  
G. L. Sun ◽  
Y. C. Dou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document