Fuel consumptions and exhaust emissions induced by cooperative adaptive cruise control strategies

2015 ◽  
Vol 29 (14) ◽  
pp. 1550084 ◽  
Author(s):  
Shaowei Yu ◽  
Zhongke Shi

Many cooperative adaptive cruise control strategies have been presented to improve traffic efficiency as well as road traffic safety, but scholars have rarely explored the impacts of these strategies on cars' fuel consumptions and exhaust emissions. In this paper, we respectively select two-velocity difference model, multiple velocity difference model and the car-following model considering multiple preceding cars' accelerations to investigate each car's fuel consumptions, carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides ( NO X ) emissions and carry out comparative analysis. The comparisons of fuel consumptions and exhaust emissions in three different cruise control strategies show that cooperative cars simulated by the car-following model considering multiple preceding cars' accelerations can run with the minimal fuel consumptions, CO, HC and NO X emissions, thus, taking the car-following model considering multiple preceding cars' accelerations as the cooperative adaptive cruise control strategy can significantly improve cars' fuel efficiency and exhaust emissions.

Author(s):  
Lin Xiao ◽  
Meng Wang ◽  
Bart van Arem

Adaptive cruise control (ACC) and cooperative adaptive cruise control (CACC) are important technologies for the achievement of vehicle automation, and their effect on traffic systems generally is evaluated with microscopic traffic simulations. A successful simulation requires realistic vehicle behavior and minimal vehicle collisions. However, most existing ACC-CACC simulation studies used simplified models that were not based on real vehicle response. The studies rarely addressed collision avoidance in the simulation. The study presented in this paper developed a realistic and collision-free car-following model for ACC-CACC vehicles. A multiregime model combining a realistic ACC-CACC system with driver intervention for vehicle longitudinal motions is proposed. This model assumes that a human driver resumes vehicle control either according to his or her assessment or after a collision warning asks the driver to take over. The proposed model was tested in a wide range of scenarios to explore model performance and collision possibilities. The testing scenarios included three regular scenarios of stop-and-go, approaching, and cut-out maneuvers, as well as two extreme safety-concerned maneuvers of hard brake and cut-in. The simulation results show that the proposed model is collision free in the full-speed-range operation with leader accelerations within −1 to 1 m/s2 and in approaching and cut-out scenarios. Those results indicate that the proposed ACC-CACC car-following model can produce realistic vehicle response without causing vehicle collisions in regular scenarios for vehicle string operations.


2019 ◽  
Vol 31 (6) ◽  
pp. 603-610
Author(s):  
Yanyan Qin ◽  
Hao Wang ◽  
Quan Chen ◽  
Bin Ran

With the aim of mitigating traffic oscillations, this paper extends a car-following model for Connected Cruise Control (CCC) systems by considering electronic throttle angles of multiple cars ahead. The linear stability condition of the proposed model is derived and numerical simulations are performed. It has been found that the proposed model is prominently better than the previous model, i.e. full velocity difference model, from the perspective of mitigating traffic oscillations. Additionally, the proposed model can also reduce fuel consumption, emissions, i.e. CO, HC and NOX, safety risk, and improve driving comfort at the same time. Simulation results suggest that the CCC car-following control design should consider the effect of multiple electronic throttle angles from the preceding cars.


2018 ◽  
Vol 32 (32) ◽  
pp. 1850396 ◽  
Author(s):  
Hongjun Cui ◽  
Jiangke Xing ◽  
Xia Li ◽  
Minqing Zhu

In this paper, the HDM car-following model, the IIDM car-following model and the IDM car-following model with a constant-acceleration heuristic is utilized to explore the effects of ACC/CACC on the fuel consumption and emissionsat the signalized intersection. Two simulation experiments are studied: (i) one with free road ahead and (ii) the second with a red light 300 m downstream at the second intersection. The numerical results show that CACC vehicle is the best vehicle type among the three vehicle types from the perspective of vehicle’s cumulative fuel consumptions and cumulative exhaust emissions. The results of this paper also suggest a very high environmental benefit of ACC/CACC at little or no cost in infrastructure.


Author(s):  
Mizanur Rahman ◽  
Mashrur Chowdhury ◽  
Kakan Dey ◽  
M. Rafiul Islam ◽  
Taufiquar Khan

A cooperative adaptive cruise control (CACC) system targeted to obtain a high level of user acceptance must replicate the driving experience in each CACC vehicle without compromising the occupant’s comfort. “User acceptance” can be defined as the safety and comfort of the occupant in the CACC vehicle in terms of acceptable vehicle dynamics (i.e., the maximum acceleration or deceleration) and string stability (i.e., the fluctuations in the vehicle’s position, speed, and acceleration). The primary objective of this study was to develop an evaluation framework for the application of a driver car-following behavior model in CACC system design to ensure user acceptance in terms of vehicle dynamics and string stability. The authors adopted two widely used driver car-following behavior models, ( a) the optimum velocity model (OVM) and ( b) the intelligent driver model (IDM), to prove the efficacy of the evaluation framework developed in this research for CACC system design. A platoon of six vehicles was simulated for three traffic flow states (uniform speed, speed with constant acceleration, and speed with constant deceleration) with different acceleration and deceleration rates. The maximum acceleration or deceleration and the sum of the squares of the errors of the follower vehicle speed were measured to evaluate user acceptance in terms of vehicle dynamics and string stability. Analysis of the simulation results revealed that the OVM performed better at modeling a CACC system than did the IDM in terms of acceptable vehicle dynamics and string stability.


2020 ◽  
Vol 10 (4) ◽  
pp. 1268
Author(s):  
Xudong Cao ◽  
Jianjun Wang ◽  
Chenchen Chen

Although the difference between the velocity of two successive vehicles is considered in the full velocity difference model (FVDM), more status information from preceding vehicles affecting the behavior of car-following has not been effectively utilized. For improving the performance of the FVDM, an extended modified car-following model taking into account traffic density and the acceleration of a leading vehicle (DAVD, density and acceleration velocity difference model) is presented under the condition of vehicle-to-vehicle (V2V) communications. Stability in the developed model is derived through applying linear stability theory. The curves of neutral stability for the improved model indicate that when the driver pays more attention to the traffic status in front, the traffic flow stability region is larger. Numerical simulation illustrates that traffic flow disturbance could be suppressed by gaining more information on preceding vehicles.


2014 ◽  
Vol 25 (06) ◽  
pp. 1450007 ◽  
Author(s):  
Tie-Qiao Tang ◽  
Jin-Gang Li ◽  
Dong Zhang ◽  
Yun-Peng Wang

In this paper, we explore each vehicle's exhaust emissions under the full velocity difference (FVD) model and the car-following model with consideration of the traffic interruption probability during three typical traffic situations. Numerical results show that the vehicle's exhaust emissions of the second model are less than those of the first model under the three typical traffic situations, which shows that the second model can reduce each vehicle's exhaust emissions.


Sign in / Sign up

Export Citation Format

Share Document