Properties of single-layer graphene with supercell doped by one defect only

2017 ◽  
Vol 31 (27) ◽  
pp. 1750196
Author(s):  
Zongguo Wang ◽  
Shaojing Qin ◽  
Chuilin Wang

Graphene has vast promising applications in nanoelectronics and spintronics because of its unique magnetic and electronic properties. Making use of an ab initio spin-polarized density functional theory, implemented by the method of the Heyd–Scuseria–Ernzerhof 06 (HSE06) hybrid functional, the properties of various defect dopants in a supercell of a semi-metal monolayer graphene were investigated. We found from our calculation that introducing one defect dopant in a supercell would break the spin sublattice symmetry, and will induce a magnetic state at some appropriate doping concentrations. This paper systematically analyzes the magnetic effects of three types of defects on graphene, that is, vacancy, substitutional dopant and adatoms. Different types of defects will induce various new properties in graphene. The energies and electronic properties of these three types of defects were also calculated.

Nanoscale ◽  
2015 ◽  
Vol 7 (7) ◽  
pp. 3055-3059 ◽  
Author(s):  
Chuanxu Ma ◽  
Haifeng Sun ◽  
Hongjian Du ◽  
Jufeng Wang ◽  
Aidi Zhao ◽  
...  

We present an investigation of the structural and electronic properties of a linear periodic chain of pentagon-heptagon pairs in single-layer graphene/SiO2 using scanning tunneling microscopy/spectroscopy, joint with density functional theory calculations.


2019 ◽  
Author(s):  
Maryam Fathzadeh ◽  
Hamoon Fahrvandi ◽  
Ebrahim Nadimi

Our study provides significant new results for an important interface in current and future nanoelectronics, namely the Graphene-ZnO interface. The manuscript includes the results of intensive density functional calculations for the interface between several ZnO surfaces and a single layer graphene. The structural properties and the binding energies at the interface are calculated for three different ZnO surfaces. The Zn-terminated (0001) and O-terminated (000-1) surfaces as well as nonpolar (10-10) surface are considered in the present study. We also investigate the electronic properties of the contact by calculating the interfacial potential barrier based on projected density of states at different layers. The results indicate the crucial role of interfacial oxygen density on the electronic behavior of the contact, which in turn can be employed to explain experimental discrepancies on the Ohmic or Schottky behavior of this interface. Calculations for interfaces with oxygen vacancies support our finding and explain experimental results for thermally treated samples.


2019 ◽  
Author(s):  
Maryam Fathzadeh ◽  
Hamoon Fahrvandi ◽  
Ebrahim Nadimi

Our study provides significant new results for an important interface in current and future nanoelectronics, namely the Graphene-ZnO interface. The manuscript includes the results of intensive density functional calculations for the interface between several ZnO surfaces and a single layer graphene. The structural properties and the binding energies at the interface are calculated for three different ZnO surfaces. The Zn-terminated (0001) and O-terminated (000-1) surfaces as well as nonpolar (10-10) surface are considered in the present study. We also investigate the electronic properties of the contact by calculating the interfacial potential barrier based on projected density of states at different layers. The results indicate the crucial role of interfacial oxygen density on the electronic behavior of the contact, which in turn can be employed to explain experimental discrepancies on the Ohmic or Schottky behavior of this interface. Calculations for interfaces with oxygen vacancies support our finding and explain experimental results for thermally treated samples.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lei Wang ◽  
Yongpeng Shi ◽  
Mingfeng Liu ◽  
Ao Zhang ◽  
Yi-Lun Hong ◽  
...  

AbstractThe search for new two-dimensional monolayers with diverse electronic properties has attracted growing interest in recent years. Here, we present an approach to construct MA2Z4 monolayers with a septuple-atomic-layer structure, that is, intercalating a MoS2-type monolayer MZ2 into an InSe-type monolayer A2Z2. We illustrate this unique strategy by means of first-principles calculations, which not only reproduce the structures of MoSi2N4 and MnBi2Te4 that were already experimentally synthesized, but also predict 72 compounds that are thermodynamically and dynamically stable. Such an intercalated architecture significantly reconstructs the band structures of the constituents MZ2 and A2Z2, leading to diverse electronic properties for MA2Z4, which can be classified according to the total number of valence electrons. The systems with 32 and 34 valence electrons are mostly semiconductors. Whereas, those with 33 valence electrons can be nonmagnetic metals or ferromagnetic semiconductors. In particular, we find that, among the predicted compounds, (Ca,Sr)Ga2Te4 are topologically nontrivial by both the standard density functional theory and hybrid functional calculations. While VSi2P4 is a ferromagnetic semiconductor and TaSi2N4 is a type-I Ising superconductor. Moreover, WSi2P4 is a direct gap semiconductor with peculiar spin-valley properties, which are robust against interlayer interactions. Our study thus provides an effective way of designing septuple-atomic-layer MA2Z4 with unusual electronic properties to draw immediate experimental interest.


RSC Advances ◽  
2017 ◽  
Vol 7 (60) ◽  
pp. 37815-37822 ◽  
Author(s):  
F. Ersan ◽  
H. Arkin ◽  
E. Aktürk

This paper investigates the effect of point defects of both hole (Ge, Se) and substitution doping of p-block elements, in single-layer b-GeSe, based on first principles plane wave calculations within spin-polarized density functional theory.


2015 ◽  
Vol 17 (17) ◽  
pp. 11211-11216 ◽  
Author(s):  
Chao Yang ◽  
Yuee Xie ◽  
Li-Min Liu ◽  
Yuanping Chen

Three single-layer tetragonal silicon carbides (SiCs), termed as T1, T2 and T3, are proposed by density functional theory (DFT) computations.


RSC Advances ◽  
2020 ◽  
Vol 10 (15) ◽  
pp. 8927-8935 ◽  
Author(s):  
Douglas Duarte de Vargas ◽  
Rogério José Baierle

Using density functional theory (DFT) calculations we investigate the structural and electronic properties of a heterogeneous van der Waals (vdW) structure consisting of silicene and NiI2 single layers.


2013 ◽  
Vol 1549 ◽  
pp. 19-24 ◽  
Author(s):  
Si Zhou ◽  
Angelo Bongiorno

ABSTRACTDensity functional theory and statistical calculations are combined to address the chemical stability and structure of epoxy functionalizations of single-layer graphene. Our computations show that at oxidation levels of O:C<0.5, the Gibbs free energy of formation per epoxide amounts to about 0.6 eV, and the structure of the epoxy functionalizations presents local order and long-range disorder. The positive energy value indicates that in air at p=1 bar and room temperature, epoxy functionalizations of graphene are unstable and prone to spontaneous reduction. Our calculations show also that formation and release of O2 is a slow process whose kinetics is controlled by large energy barriers, the formation of very stable intermediate species, and unlikely electronic transitions.


2019 ◽  
Author(s):  
Shuai Zhao ◽  
Chunfeng Lan ◽  
Huanhuan Li ◽  
Chu Zhang ◽  
Tingli Ma

Layered perovskites have attracted considerable attention in optoelectronic applications due to their excellent electronic properties and stability. In this work, the quasi-2D aurivillius halide perovskites are investigated using density functional theory. The single-layer aurivillius perovskite Ba2PbI6 is predicted to have a direct bandgap of 1.89 eV, which is close to that of the Ruddlesden–Popper perovskite Cs2PbI4. The electronic structures near the Fermi level are mainly governed by the [PbX6] octahedra, which leads to similar electronic properties to that of Cs2PbI4. Decomposition energies reveal that these aurivillius perovskites exhibit thermal instability. Increasing the number of [PbX6] octahedra layer can enhance the stability and reduce the bandgap. Bi- and In-based aurivillius perovskites are also calculated to evaluate the Pb-free alternatives. These calculations can serve as a theoretical support in exploring novel layered perovskites.<br>


RSC Advances ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 2202-2210 ◽  
Author(s):  
Jakub Goclon ◽  
Krzysztof Winkler ◽  
Johannes T. Margraf

Applying density functional theory (DFT) calculations, we predict the structural and electronic properties of different types of palladium–fullerene polymers.


Sign in / Sign up

Export Citation Format

Share Document