Matter-wave solitons of Bose–Einstein condensates with time-dependent complex potentials

2018 ◽  
Vol 32 (15) ◽  
pp. 1850184 ◽  
Author(s):  
Emmanuel Kengne ◽  
Ahmed Lakhssassi

To analytically investigate the matter-wave solitons of Bose–Einstein condensates (BECs) in time-dependent complex potential, we consider a cubic-quintic Gross–Pitaevskii (GP) equation with distributed coefficients and a dissipative term. By introducing a suitable ansatz, we establish the criterion of the modulational instability (MI) of the system and present an explicit expression for the growth rate of a purely growing MI. Effects of the parabolic background potential, as well as of the linear potential, the gain/loss parameter, and the two- and three-body interatomic interactions on the MI are investigated. We show how the feeding/loss parameter can be well used to control the instability of the system. The analytical resolution of the considered GP equation leads to exact bright, dark and kink solitary wave solutions which are used to investigate analytically the dynamics of matter-wave solitons in BECs under consideration. These analytical investigations show that the amplitude and the motion of bright, dark and kink solitary waves depend on the strengths of the two- and three-body interatomic interactions, as well as on the strengths of the external trapping potential and the parameter of the gain/loss of atoms in the condensate.

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Jing Chen ◽  
Jie Yang ◽  
Lu Zhang

By means of similarity transformation, this paper proposes the matter-wave soliton solutions and dynamics of the variable coefficient cubic-quintic nonlinear Schrödinger equation arising from Bose-Einstein condensates with time-dependent two- and three-body interactions. It is found that, under the effect of time-dependent two- and three-body interaction and harmonic potential with time-dependent frequency, the density of atom condensates will gradually diminish and finally collapse.


2022 ◽  
Author(s):  
Yajie Yang ◽  
Ying Dong

Abstract The gain or loss effect on the dynamics of the matter-wave solitons in three-component Bose-Einstein condensates with time-modulated interactions trapped in parabolic external potentials are investigated analytically. Some exact matter-wave soliton solutions to the three-coupled Gross-Pitaevskii equation describing the three-component Bose-Einstein condensates are constructed by similarity transformation. The dynamical properties of the matter-wave solitons are analyzed graphically, and the effects of the gain or loss parameter and the frequency of the external potentials on the matter-wave solitons are explored. It is shown that the gain coefficient makes the atom condensate to absorb energy from the background, while the loss coefficient brings about the collapse of the condensate.


2014 ◽  
Vol 28 (04) ◽  
pp. 1450003 ◽  
Author(s):  
DIDIER BELOBO BELOBO ◽  
GERMAIN HUBERT BEN-BOLIE ◽  
TIMOLÉON CRÉPIN KOFANÉ

The modulational instability (MI) of binary condensates with cubic-quintic nonlinearities is investigated. Using a linear stability analysis, a gain of instability is derived then, effects of the quintic nonlinearities on the instability gain are identified. To be precise, attractive intraspecie quintic nonlinearities enhance the instability, while repulsive quintic intraspecie nonlinearities soften the instability. Besides, small attractive and large repulsive quintic inter-species nonlinearities increase the instability. Numerical experiments quite well corroborate the analytical predictions. Further numerical results show effects of the cubic and the quintic nonlinearities on the propagation of trains of bright solitons generated.


2011 ◽  
Vol 25 (18) ◽  
pp. 2427-2440 ◽  
Author(s):  
B. B. BAIZAKOV ◽  
A. BOUKETIR ◽  
A. MESSIKH ◽  
A. BENSEGHIR ◽  
B. A. PUMAROV

Static and dynamic properties of matter-wave solitons in dense Bose–Einstein condensates, where three-body interactions play a significant role, have been studied by a variational approximation (VA) and numerical simulations. For experimentally relevant parameters, matter-wave solitons may acquire a flat-top shape, which suggests employing a super-Gaussian trial function for VA. Comparison of the soliton profiles, predicted by VA and those found from numerical solution of the governing Gross–Pitaevskii equation shows good agreement, thereby validating the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document