Scattering Rates in a Semiconductor Heterostructure: The Electron–Phonon Coupling

1998 ◽  
Vol 12 (16n17) ◽  
pp. 1719-1728 ◽  
Author(s):  
F. Comas ◽  
F. Castro ◽  
J. L. Gondar

We investigate Scattering-Rates due to the electron–phonon interaction in a Semiconductor Heterostructure (SH) on the basis of a phenomenological theory for Polar Optical Phonons (POP) in semiconductor nanostructures which was proposed in the latter times. The applied theory has led to a plausible description of POP in Quantum-Wells, Quantum-Wires and Quantum-Dots. Using this theory we find an explicit expression for the electron–phonon Hamiltonian with direct application to a SH. Scattering Rates are calculated by applying this Hamiltonian and also a realistic wave-function for the electron states (using Airy functions) is considered. The obtained results are discussed in detail and compared with previous works on the subject.

2006 ◽  
Vol 20 (05) ◽  
pp. 559-578 ◽  
Author(s):  
LI ZHANG ◽  
JUN-JIE SHI

Under the dielectric continuum model and Loudon's uniaxial crystal model, by adopting the transfer matrix method, the dispersion properties of the interface optical (IO) and surface optical (SO) phonon modes and their couplings with electrons in multi-layer coupling wurtzite quantum wells (QWs) are deduced and analyzed via the method of electrostatic potential expanding. Numerical calculations on a freestanding symmetrical wurtzite QW and an asymmetrical wurtzite QW have been performed. Results reveal that, in general, there are four branches of IO and two branches of SO phonon modes in the systems. The dispersions of these IO and SO phonon modes are obvious only when the free two-dimensional phonon wave number ktparallel to the heterostructure interfaces is small. The degenerating behavior for these phonon modes has been clearly observed for small kt. When ktis relatively large, with the increase in kt, the frequencies of the IO and SO phonon modes converge to some definite limiting frequencies in corresponding wurtzite single planar heterostructure. This feature have been analyzed in depth from the mathematical and physical viewpoints. The calculations of electron-phonon coupling function show that, the electrostatic potential distribution of the IO and SO mode in freestanding symmetrical wurtzite QW is either symmetrical or is antisymmetrical; but that in freestanding asymmetrical wurtzite QW is neither symmetrical nor is antisymmetric. The calculation also shows that the SO modes and the short wavelength phonon modes play a more important role in the electron-phonon interaction.


2000 ◽  
Vol 14 (10) ◽  
pp. 1067-1073
Author(s):  
J. L. GONDAR ◽  
F. COMAS ◽  
F. CASTRO

We calculate the conduction electron scattering rates in a model for a semiconductor heterostructure (SH) of nanometric dimensions. Electron interaction with polar optical phonons (POP) is considered by applying POP modes analyzed in previous papers. The SH is modeled as a two interfaces slab, one of them mechanically free and the other one an interface with a semi infinite semiconductor. Only intraband electron transitions within the first subband are studied and a variational approach is introduced for the electron wavefunction. Comparisons with previous works on the subject are made.


Author(s):  
A. Carlsson ◽  
J.-O. Malm ◽  
A. Gustafsson

In this study a quantum well/quantum wire (QW/QWR) structure grown on a grating of V-grooves has been characterized by a technique related to chemical lattice imaging. This technique makes it possible to extract quantitative information from high resolution images.The QW/QWR structure was grown on a GaAs substrate patterned with a grating of V-grooves. The growth rate was approximately three monolayers per second without growth interruption at the interfaces. On this substrate a barrier of nominally Al0.35 Ga0.65 As was deposited to a thickness of approximately 300 nm using metalorganic vapour phase epitaxy . On top of the Al0.35Ga0.65As barrier a 3.5 nm GaAs quantum well was deposited and to conclude the structure an additional approximate 300 nm Al0.35Ga0.65 As was deposited. The GaAs QW deposited in this manner turns out to be significantly thicker at the bottom of the grooves giving a QWR running along the grooves. During the growth of the barriers an approximately 30 nm wide Ga-rich region is formed at the bottom of the grooves giving a Ga-rich stripe extending from the bottom of each groove to the surface.


2002 ◽  
Vol 81 (4) ◽  
pp. 727-729 ◽  
Author(s):  
T. Sugaya ◽  
J. P. Bird ◽  
D. K. Ferry ◽  
A. Sergeev ◽  
V. Mitin ◽  
...  

1996 ◽  
Vol 10 (20) ◽  
pp. 2469-2529 ◽  
Author(s):  
A.O. ANOKHIN ◽  
M.I. KATSNELSON

A model of alloy is considered which includes both quenched disorder in the electron subsystem (“alloy” subsystem) and electron-phonon interaction. For given approximate solution for the alloy part of the problem, which is assumed to be conserving in Baym’s sense, we construct the generating functional and derive the Eliashberg-type equations which are valid to the lowest order in the adiabatic parameter. The renormalization of bare electron–phonon interaction vertices by disorder is taken into account consistently with the approximation for the alloy self-energy. For the case of exact configurational averaging the same set of equations is established within the usual T-matrix approach. We demonstrate that for any conserving approximation for the alloy part of the self-energy the Anderson’s theorem holds in the case of isotropic singlet pairing provided disorder renormalizations of the electron-phonon interaction vertices are neglected. Taking account of the disorder renormalization of the electron-phonon interaction we analyze general equations qualitatively and present the expressions for Tc for the case of weak and intermediate electron-phonon coupling. Disorder renormalizations of the logarithmic corrections to the effective coupling, which arise when the effective interaction kernel for the Cooper channel has the second energy scale, as well as the renormalization of the dilute paramagnetic impurity suppression are discussed.


1991 ◽  
Vol 79 (7) ◽  
pp. 561-565 ◽  
Author(s):  
S. Selci ◽  
A. Cricenti ◽  
M. Righini ◽  
C. Petrillo ◽  
F. Sacchetti ◽  
...  

MRS Bulletin ◽  
2001 ◽  
Vol 26 (12) ◽  
pp. 998-1004 ◽  
Author(s):  
Victor I. Klimov ◽  
Moungi G. Bawendi

Semiconductor materials are widely used in both optically and electrically pumped lasers. The use of semiconductor quantum wells (QWs) as optical-gain media has resulted in important advances in laser technology. QWs have a two-dimensional, step-like density of electronic states that is nonzero at the band edge, enabling a higher concentration of carriers to contribute to the band-edge emission and leading to a reduced lasing threshold, improved temperature stability, and a narrower emission line. A further enhancement in the density of the band-edge states and an associated reduction in the lasing threshold are in principle possible using quantum wires and quantum dots (QDs), in which the confinement is in two and three dimensions, respectively. In very small dots, the spacing of the electronic states is much greater than the available thermal energy (strong confinement), inhibiting thermal depopulation of the lowest electronic states. This effect should result in a lasing threshold that is temperatureinsensitive at an excitation level of only 1 electron-hole (e-h) pair per dot on average. Additionally, QDs in the strongconfinement regime have an emission wavelength that is a pronounced function of size, adding the advantage of continuous spectral tunability over a wide energy range simply by changing the size of the dots.


1996 ◽  
Vol 10 (22) ◽  
pp. 2781-2796 ◽  
Author(s):  
SOMA MUKHOPADHYAY ◽  
ASHOK CHATTERJEE

We use the Feynman–Haken path-integral formalism to obtain the polaronic correction to the ground state energy of an electron in a polar semiconductor quantum dot with parabolic confinement in both two and three dimensions. We perform calculations for the entire range of the electron–phonon coupling parameter and for arbitrary confinement length. We apply our results to several semiconductor quantum dots and show that the polaronic effect in some of these dots can be considerably large if the dot sizes are made smaller than a few nanometers.


Sign in / Sign up

Export Citation Format

Share Document