scholarly journals SHOT NOISE FOR ENTANGLED ELECTRONS WITH BERRY PHASE

2007 ◽  
Vol 21 (07) ◽  
pp. 399-406
Author(s):  
HUI ZHAO ◽  
XUEAN ZHAO ◽  
YOU-QUAN LI

We study shot noise for entangled electrons in a 4-lead beam-splitter with one incoming lead driven by adiabatically rotating magnetic fields. We propose a setup of an adiabatically rotating magnetic field which is appropriate for an electron beam to transport through. Using the scattering matrix approach, we find that shot noise for the singlet and that for the entangled triplet oscillates between bunching and antibunching due to the influence of the Berry phase. It provides us with a new approach for testing the Berry phase in electron transport on the basis of entanglement.

2007 ◽  
Vol 21 (17) ◽  
pp. 3065-3074
Author(s):  
XIAN-JUN YE

By adding a rotating magnetic field in one incoming lead, we calculate the shot noise with different incident states in a 4-lead beam-splitter. The result shows that the shot noise of singlet and triplet states oscillates with the external magnetic field and depends on the symmetric properties of the incident states. Thus, the singlet, entangled triplet, and polarized states can be distinguished by adjusting the magnetic field.


1981 ◽  
Vol 26 (3) ◽  
pp. 465-480 ◽  
Author(s):  
W. N. Hugrass ◽  
I. R. Jones ◽  
M. G. R. Phillips

An investigation of current production by means of a rotating magnetic field is made in an experiment in which the technique is used to generate a theta-pinch- like distribution of field and plasma. Detailed measurements are made of both the generated unidirectional azimuthal electron current and the penetration of the rotating field into the plasma. The experimental results support the theoretical prediction that a threshold value of the amplitude of the applied rotating field exists for setting the electrons into rotation.


Soft Matter ◽  
2019 ◽  
Vol 15 (44) ◽  
pp. 9018-9030
Author(s):  
Klaus D. Usadel ◽  
Anastasiya Storozhenko ◽  
Igor Arefyev ◽  
Hajnalka Nádasi ◽  
Torsten Trittel ◽  
...  

The dynamics of magnetic nanoparticles in rotating magnetic fields is studied both experimentally and theoretically.


2006 ◽  
Vol 508 ◽  
pp. 163-168 ◽  
Author(s):  
Xiao Dong Wang ◽  
A. Ciobanas ◽  
Florin Baltaretu ◽  
Anne Marie Bianchi ◽  
Yves Fautrelle

A numerical model aimed at simulating the segregations during the columnar solidification of a binary alloy is used to investigate the effects of a forced convection. Our objective is to study how the segregation characteristics in the mushy zone are influenced by laminar flows driven both by buoyancy and by AC fields of moderate intensity. Various types of magnetic fields have been tested, namely travelling, rotating magnetic field and slowly modulated electromagnetic forces. The calculations have been achieved on two types of alloys, namely tin-lead and aluminiumsilicon. It is shown that the flow configuration changes the segregation pattern. The change comes from the coupling between the liquid flow and the top of the mushy zone via the pressure distribution along the solidification front. The pressure difference along the front drives a mush flow, which transports the solute in the mushy region. Another interesting type of travelling magnetic field has been tested. It consists of a slowly modulated travelling magnetic field. It is shown that in a certain range of values of the modulation period, the channels are almost suppressed. The normal macrosegregation remains, but the averaged segregation in the mushy zone is weaker than in the natural convection case. The optimal period depends on the electromagnetic force strength as well as the cooling rate. The latter phenomenon cannot occur in the case of rotating magnetic fields, since in that configuration the sign of the pressure gradient along the solidification front remains unchanged. Recent solidification experiments with electromagnetic stirring confirm the predicted macrosegregation patterns.


Science ◽  
2018 ◽  
Vol 362 (6419) ◽  
pp. 1149-1152 ◽  
Author(s):  
Jing Li ◽  
Rui-Xing Zhang ◽  
Zhenxi Yin ◽  
Jianxiao Zhang ◽  
Kenji Watanabe ◽  
...  

Developing alternative paradigms of electronics beyond silicon technology requires the exploration of fundamentally new physical mechanisms, such as the valley-specific phenomena in hexagonal two-dimensional materials. We realize ballistic valley Hall kink states in bilayer graphene and demonstrate gate-controlled current transmission in a four-kink router device. The operations of a waveguide, a valve, and a tunable electron beam splitter are demonstrated. The valley valve exploits the valley-momentum locking of the kink states and reaches an on/off ratio of 8 at zero magnetic field. A magnetic field enables a full-range tunable coherent beam splitter. These results pave a path to building a scalable, coherent quantum transportation network based on the kink states.


2006 ◽  
Vol 129 (2) ◽  
pp. 241-243 ◽  
Author(s):  
X. Wang ◽  
N. Ma

During the vertical Bridgman process, a single semiconductor crystal is grown by the solidification of an initially molten semiconductor contained in an ampoule. The motion of the electrically conducting molten semiconductor can be controlled with an externally applied magnetic field. This paper treats the flow of a molten semiconductor and the dopant transport during the vertical Bridgman process with a periodic transverse or rotating magnetic field. The frequency of the externally applied magnetic field is sufficiently low that this field penetrates throughout the molten semiconductor. Dopant distributions in the crystal are presented.


2019 ◽  
Vol 10 ◽  
pp. 2294-2303
Author(s):  
Nikolai A Usov ◽  
Ruslan A Rytov ◽  
Vasiliy A Bautin

The dynamics of magnetic nanoparticles in a viscous liquid in a rotating magnetic field has been studied by means of numerical simulations and analytical calculations. In the magneto-dynamics approximation three different modes of motion of the unit magnetization vector and particle director are distinguished depending on frequency and amplitude of the rotating magnetic field. The specific absorption rate of a dilute assembly of superparamagnetic nanoparticles in rotating magnetic field is calculated by solving the Landau–Lifshitz stochastic equation for the unit magnetization vector and the stochastic equation for the particle director. At elevated frequencies an optimal range of particle diameters is found where the specific absorption rate of an assembly in a rotating magnetic field has a maximum. It is shown that with an optimal choice of the particle sizes sufficiently large SAR values of the order of 400–500 W/g can be obtained in a rotating magnetic field with a frequency f = 400 kHz and a moderate magnetic field amplitude H 0 = 100 Oe.


Soft Matter ◽  
2017 ◽  
Vol 13 (36) ◽  
pp. 6259-6269 ◽  
Author(s):  
Shahab Boroun ◽  
Faïçal Larachi

Rotational movement of MNPs in ferrogels in an external rotating magnetic field for tuning mass transport.


1984 ◽  
Vol 37 (5) ◽  
pp. 509 ◽  
Author(s):  
WN Hugrass

The use of rotating magnetic fields (RMF) to drive steady currents in plasmas involves a transfer of energy and angular momentum from the radio frequency source feeding the rotating field coils to the plasma. The. power-torque relationships in RMF systems are discussed and the analogy between RMF current drive and the polyphase induction motor is explained. The general relationship between the energy and angular momentum transfer is utilized to calculate the efficiency of the RMF plasma current drive. It is found that relatively high efficiencies can be achieved in RMF current drive because of the low phase velocity and small slip between the rotating field and the electron fluid.


1987 ◽  
Vol 37 (1) ◽  
pp. 1-13 ◽  
Author(s):  
W. N. Hugrass ◽  
M. Turley

The motion of electrons and ions in the self-consistent fields of a compact toroidal equilibrium maintained by means of a rotating magnetic field is studied. It is found that the particles are confined although the lines of the instantaneous magnetic field are open. The results are compared with those obtained in an earlier study of the motion of charged particles in the self-consistent fields appropriate to cylindrical plasma equilibrium maintained by means of rotating magnetic fields.


Sign in / Sign up

Export Citation Format

Share Document