STUDY OF THERMODYNAMIC PROPERTIES OF ZINC-BLENDE-TYPE SEMICONDUCTORS: TEMPERATURE AND PRESSURE DEPENDENCES

2011 ◽  
Vol 25 (12n13) ◽  
pp. 1041-1051 ◽  
Author(s):  
HO KHAC HIEU ◽  
VU VAN HUNG

Using the statistical moment method (SMM), the temperature and pressure dependences of thermodynamic quantities of zinc-blende-type semiconductors have been investigated. The analytical expressions of the nearest-neighbor distances, the change of volumes and the mean-square atomic displacements (MSDs) have been derived. Numerical calculations have been performed for a series of zinc-blende-type semiconductors: GaAs , GaP , GaSb , InAs , InP and InSb . The agreement between our calculations and both earlier other theoretical results and experimental data is a support for our new theory in investigating the temperature and pressure dependences of thermodynamic quantities of semiconductors.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Bui Duc Tinh ◽  
Nguyen Quang Hoc ◽  
Dinh Quang Vinh ◽  
Tran Dinh Cuong ◽  
Nguyen Duc Hien

The analytic expressions for the thermodynamic and elastic quantities such as the mean nearest neighbor distance, the free energy, the isothermal compressibility, the thermal expansion coefficient, the heat capacities at constant volume and at constant pressure, the Young modulus, the bulk modulus, the rigidity modulus, and the elastic constants of binary interstitial alloy with body-centered cubic (BCC) structure, and the small concentration of interstitial atoms (below 5%) are derived by the statistical moment method. The theoretical results are applied to interstitial alloy FeC in the interval of temperature from 100 to 1000 K and in the interval of interstitial atom concentration from 0 to 5%. In special cases, we obtain the thermodynamic quantities of main metal Fe with BCC structure. Our calculated results for some thermodynamic and elastic quantities of main metal Fe and alloy FeC are compared with experiments.


Author(s):  
John C. Russ

The spatial distribution of features in an image is often interesting, but not simple to characterize. Mapping of the image into a different space (e.g., Fourier or Hough) offers direct information on various regularities in feature spacing or alignment, but does not deal directly with the individual features. Two other approaches are available; each has advantages and drawbacks, which are discussed here.Schwarz & Exner determine the spatial coordinates of the centroids of features, and sort them to locate the nearest neighbor for each feature present, constructing a distribution plot of the frequency of nearest neighbor distances. Figures 1 and 2 show an example. The three fields in Figure 1 contain, respectively, features which are well-spaced from each other, randomly arranged on the plane, and clustered together. For the random distribution of points, the histogram of nearest neighbor distances is a Poisson distribution, and the mean value is 0.5/NA1/2, where NA is the number of features divided by the area of the image.


Author(s):  
Nguyen Quang Hoc ◽  
Vu Quoc Trung ◽  
Nguyen Duc Hien ◽  
Nguyen Minh Hoa

In this study, the mean nearest neighbor distance between two atoms, the Helmholtz free energy and characteristic quantities for elastic deformation such as elastic moduli E, G, K and elastic constants C11, C12, C44 for binary interstitial alloys with FCC structure under pressure are derived with the statistical moment method. The numerical calculations for interstitial alloy AGC were performed by combining the Mie-Lennard-Jones potential and the Morse potential. Our calculated results were compared with other calculations and the experimental data.


Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Nguyen Van Hung ◽  
Nguyen Cong Toan ◽  
Nguyen Ba Duc ◽  
Dinh Quoc Vuong

AbstractThermodynamic properties of semiconductor compounds have been studied based on Debye-Waller factors (DWFs) described by the mean square displacement (MSD) which has close relation with the mean square relative displacement (MSRD). Their analytical expressions have been derived based on the statistical moment method (SMM) and the empirical many-body Stillinger-Weber potentials. Numerical results for the MSDs of GaAs, GaP, InP, InSb, which have zinc-blende structure, are found to be in reasonable agreement with experiment and other theories. This paper shows that an elements value for MSD is dependent on the binary semiconductor compound within which it resides.


2020 ◽  
Vol 65 (6) ◽  
pp. 61-74
Author(s):  
Hoc Nguyen Quang ◽  
Hien Nguyen Duc ◽  
Hoa Nguyen Minh ◽  
Trung Vu Quoc

The mean nearest neighbor distance between two atoms, the Helmholtz free energy and characteristic quantities for elastic deformation such as elastic moduli E, G, K, and elastic constants C11, C12, C44 for binary interstitial alloys with BCC structure under pressure are derived from the statistical moment method. The numerical calculations for interstitial alloy FeSi are performed by combining the Mie-Lennard-Jones potential and the model atomic potential. Our calculated results are compared with other calculations and the experimental data.


2017 ◽  
Vol 31 (21) ◽  
pp. 1750141
Author(s):  
Vu Thi Thanh Ha ◽  
Vu Van Hung ◽  
Pham Thi Minh Hanh ◽  
Viet Tuyen Nguyen ◽  
Ho Khac Hieu

The structural and thermomechanical properties of zinc-blende aluminum class of III–V compounds have been studied based on the statistical moment method (SMM) in quantum statistical mechanics. Within the SMM scheme, we derived the analytical expressions of the nearest-neighbor distance, thermal expansion coefficient, atomic mean-square displacement and elastic moduli (Young’s modulus, bulk modulus and shear modulus). Numerical calculations have been performed for zinc-blende AlX (X = As, P, Sb) at ambient conditions up to the temperature of 1000 K. Our results are in good and reasonable agreements with earlier measurements and can provide useful references for future experimental and theoretical works. This research presents a systematic approach to investigate the thermodynamic and mechanical properties of materials.


Author(s):  
S. R. Herd ◽  
P. Chaudhari

Electron diffraction and direct transmission have been used extensively to study the local atomic arrangement in amorphous solids and in particular Ge. Nearest neighbor distances had been calculated from E.D. profiles and the results have been interpreted in terms of the microcrystalline or the random network models. Direct transmission electron microscopy appears the most direct and accurate method to resolve this issue since the spacial resolution of the better instruments are of the order of 3Å. In particular the tilted beam interference method is used regularly to show fringes corresponding to 1.5 to 3Å lattice planes in crystals as resolution tests.


1980 ◽  
Vol 102 (1) ◽  
pp. 94-101 ◽  
Author(s):  
S. Okabe ◽  
Y. Yokoyama

This paper treats the motion of a particle on a vibratory feeder whose track has directional characteristic in repulsive motion, for examples, obliquely bristled track, obliquely sliced track and so on. Under some assumptions, the practical equation for predicting the mean conveying velocity is shown and the relations between conveying condition and the mean conveying velocity are clarified theoretically. These relations are shown in various diagrams. Referring these diagrams, the optimum conveying conditions are discussed also. The theoretical results show that the mean conveying velocity is considerably larger than that of the ordinary feeder. The theoretical results are confirmed by experimental studies.


1985 ◽  
Vol 107 (2) ◽  
pp. 188-195 ◽  
Author(s):  
S. Okabe ◽  
Y. Kamiya ◽  
K. Tsujikado ◽  
Y. Yokoyama

This paper presents the conveying velocity on a vibratory conveyor whose track is vibrated by nonsinusoidal vibration. The velocity wave form of the vibrating track is approximated by six straight lines, and five distortion factors of the wave form are defined. Considering the modes of motion of the particle, the mean conveying velocity is calculated for various conditions. Referring to these results, the optimum wave form is clarified analytically. The theoretical results show that the mean conveying velocity is considerably larger than that of ordinary feeders if the proper conveying conditions are chosen. The theoretical results are confirmed by experimental results.


Sign in / Sign up

Export Citation Format

Share Document