Mechanism of enhanced photocatalytic activities on tungsten trioxide doped with sulfur: Dopant-type effects

2016 ◽  
Vol 30 (27) ◽  
pp. 1650340 ◽  
Author(s):  
Dan Li ◽  
Wei-Qing Huang ◽  
Zhong Xie ◽  
Liang Xu ◽  
Yin-Cai Yang ◽  
...  

The enhanced photocatalytic activity of tungsten trioxide (WO3) has been observed experimentally via doping with S element as different dopant types. Herein, a comparative study on the effect of different types of S dopant and native vacancy defects on the electronic structure and optical properties of WO3 is presented by using hybrid Heyd–Scuseria–Ernzerhof 2006 (HSE06) density functional methods. Six possible models (S[Formula: see text]–WO3, S[Formula: see text]–WO3, V[Formula: see text]–WO3, V[Formula: see text]–WO3, S[Formula: see text] + V[Formula: see text]–WO3 and S[Formula: see text] + V[Formula: see text]–WO3) based on WO3 are tentatively put forward. It is found that cationic S doping (the substitution of W by S) is more favorable than anionic S doping (replacing O with S), and both cases become easier to form as native vacancy defect is accompanied. The electronic structures of doped WO3 depend on the type of dopant: anionic S doping results into three isolated levels in the upper part of valence band, while cationic S doping only induces an effective band gap reduction, which is critical for efficient light-to-current conversion. Interestingly, the isolated states near gap of WO3 would appear as long as native vacancy defects exist. The introduced levels or reduced band gaps make the systems responsed to the visible light, even further to a range of 400–700 nm. These findings can rationalize the available experimental results and pave the way for developing WO3-based photocatalysts.

2006 ◽  
Vol 05 (spec01) ◽  
pp. 515-522
Author(s):  
ZHAOYING CHEN ◽  
HONGJUN XIANG ◽  
ZHENYU LI ◽  
JINLONG YANG

The electronic and magnetic properties of Na 0.5 CoO 2 are studied within the hybrid density functional methods. A charge-ordered antiferromagnetic insulating state is unambiguously identified as the ground state of Na 0.5 CoO 2. The electronic structures of the ground state are very similar to our previous GGA + U (U = 4 eV ) results, except for the large band gap discrepancy. Our results suggest that the hybrid density functional methods capture the main physics of the strong correlation in Na x CoO 2 system.


2015 ◽  
Vol 93 (3) ◽  
pp. 279-288 ◽  
Author(s):  
Rupinder preet Kaur ◽  
Damanjit Kaur ◽  
Ritika Sharma

The present investigation deals with the study of the N–H bond dissociation enthalpies (BDEs) of the Y-substituted (NH2-C(=X)Y-R) and N-substituted ((R)(H)NC(=X)YH) carbamates (X, Y = O, S, Se; R = H, CH3, F, Cl, NH2), which have been evaluated using ab initio and density functional methods. The variations in N−H BDEs of these Y-substituted and N-substituted carbamates as the effect of substituent have been understood in terms of molecule stabilization energy (ME) and radical stabilization energy (RE), which have been calculated using the isodesmic reactions. The natural bond orbital analysis indicated that the electrodelocalization of the lone pairs of heteroatoms in the molecules and radicals affect the ME and RE values depending upon the type and site of substitution (whether N- or Y-). The variations in N−H BDEs depend upon the combined effect of molecule stabilization and radical stabilization by the various substituents.


2004 ◽  
Vol 03 (01) ◽  
pp. 117-144 ◽  
Author(s):  
AKIRA YOSHIMORI

This article reviews microscopic development of time dependent functional method and its application to chemical physics. It begins with the formulation of density functional theory. The time dependent extension is discussed after the equilibrium formulation. Its application is explained by solvation dynamics. In addition, it reviews studies of nonlinear effects on polar liquids and simple mixtures.


Sign in / Sign up

Export Citation Format

Share Document