The design and characterization of high photon detection efficiency CMOS single-photon avalanche diode

2018 ◽  
Vol 32 (25) ◽  
pp. 1850302
Author(s):  
Wei Wang ◽  
Ting Chen ◽  
Yongchun He ◽  
Mengjia Huang ◽  
Hao Yang ◽  
...  

The high photon detection efficiency (PDE) single-photon avalanche diode (SPAD) designed with a low voltage standard 0.18 [Formula: see text]m CMOS process is investigated in detail. The proposed CMOS SPAD is with P+/N-well junction structure, and its multiplication region is surrounded by a virtual guard ring, with which the premature edge avalanche breakdown can be prevented. The analytical and simulation results show that the CMOS SPAD has a uniform electric field distribution in P+/N-well junction, and the breakdown voltage is as low as 8.2 V, the PDE is greater than 40% at the wavelength range of 650–950 nm, at a low excess bias voltage (light intensity is about 0.001 W/cm2), and the peak PDE at 800 nm is about 48%, the relatively low dark count rate (DCR) of 1.4 KHz is obtained.

2017 ◽  
Vol 31 (17) ◽  
pp. 1750193 ◽  
Author(s):  
Wei Wang ◽  
Xiaoyuan Bao ◽  
Li Chen ◽  
Ting Chen ◽  
Guanyu Wang ◽  
...  

This paper proposed a single photon avalanche diodes (SPADs) designed with 0.18 [Formula: see text] standard CMOS process. One of the major challenges in CMOS SPADs is how to raise the low photon detection efficiency (PDE). In this paper, the device structure and process parameters of the CMOS SPAD are optimized so as to improve PDE properties which have been investigated in detail. The CMOS SPADs are designed in p+/n-well/deep n-well (DNW) structure with the p-sub and the p-well guard ring (GR). The simulation results show that with the p-well GR, the quantum efficiency (QE) is about 80% with the breakdown voltage of 12.7 V, the unit responsivity is as high as 0.38 A/W and the PDE of 51% and 53% is obtained when the excess bias is at 1 V and 2 V, respectively. The dark count rate (DCR) is 6.2 kHz when bias voltage is 14 V. With the p-sub GR, the breakdown voltage is 13 V, the unit responsivity is up to 0.26 A/W, the QE is 58%, the PDE is 33% and 37% at excess bias of 1 V and 2 V, respectively. The DCR is 3.4 kHz at reverse bias voltage of 14 V.


2021 ◽  
Vol 16 (4) ◽  
pp. 546-551
Author(s):  
Mei-Ling Zeng ◽  
Yang Wang ◽  
Xiang-Liang Jin ◽  
Yan Peng ◽  
Jun Luo

Single-photon avalanche diodes (SPADs) can detect extremely weak optical signals and are mostly used in single-photon imaging, quantum communication, medical detection, and other fields. In this paper, a low dark count rate (DCR) single-photon avalanche diode device is designed based on the 180 nm standard BCD process. The device has a good response in the 450~750 nm spectral range. The active area of the device adopts a P+/N-Well structure with a diameter of 20 µm. The low-doped N-Well increases the thickness of the depletion region and can effectively improve the detection sensitivity; the P-Well acts as a guard ring to prevent premature breakdown of the PN junction edge; the isolation effect of the deep N-Well reduces the noise coupling of the substrate. Use the TCAD simulation tool to verify the SPAD’s basic principles. The experimental test results show that the avalanche breakdown voltage of the device is 11.7 V. The dark count rate is only 123 Hz when the over-bias voltage is 1 V, and the peak photon detection efficiency (PDE) reaches 37.5% at the wavelength of 500 nm under the 0.5 V over-bias voltage. PDE exceeds 30% in the range of 460~640 nm spectral range, which has a good response in the blue band. The SPAD device provides certain design ideas for the research of fluorescence detectors.


2019 ◽  
Vol 33 (09) ◽  
pp. 1950099
Author(s):  
Wei Wang ◽  
Guang Wang ◽  
Hongan Zeng ◽  
Yuanyao Zhao ◽  
U-Fat Chio ◽  
...  

A single photon avalanche diode (SPAD) structure designed with standard 180 nm CMOS technology is investigated in detail. The SPAD employs a [Formula: see text]-well anode, rather than the conventional [Formula: see text] layer, and with a [Formula: see text]-well/deep [Formula: see text]-well junction with square shape, a deep retrograde [Formula: see text]-well virtual guard ring which prevents the premature edge avalanche breakdown. The analytical and simulation results show that the SPAD exhibits a uniform electric field distribution in [Formula: see text]-well/deep [Formula: see text]-well junction with the active area of [Formula: see text], and the avalanche breakdown voltage is as low as 9 V, the peak of the photon detection efficiency (PDE) is about 33% at 500 nm, the relatively low dark count rate (DCR) of 0.66 KHz at room temperature is obtained.


2012 ◽  
Vol 33 (5) ◽  
pp. 694-696 ◽  
Author(s):  
Eric A. G. Webster ◽  
Justin A. Richardson ◽  
Lindsay A. Grant ◽  
David Renshaw ◽  
Robert K. Henderson

2016 ◽  
Vol 45 (8) ◽  
pp. 823001
Author(s):  
王巍 WANG Wei ◽  
鲍孝圆 BAO Xiao-yuan ◽  
陈丽 CHEN Li ◽  
徐媛媛 XU Yuan-yuan ◽  
陈婷 CHEN Ting ◽  
...  

2013 ◽  
Vol 13 (5) ◽  
pp. 1637-1640 ◽  
Author(s):  
Vitali Savuskan ◽  
Igor Brouk ◽  
Michael Javitt ◽  
Yael Nemirovsky

2017 ◽  
Vol 46 (8) ◽  
pp. 823001
Author(s):  
王巍 WANG Wei ◽  
陈婷 CHEN Ting ◽  
李俊峰 LI Jun-feng ◽  
何雍春 HE Yong-chun ◽  
王冠宇 WANG Guan-yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document