Control and synchronization in nonlinear circuits by using a thermistor

2020 ◽  
Vol 34 (25) ◽  
pp. 2050267 ◽  
Author(s):  
Xiufang Zhang ◽  
Chunni Wang ◽  
Jun Ma ◽  
Guodong Ren

The survival and occurrence of chaos are much dependent on the intrinsic nonlinearity and parameters region for deterministic nonlinear systems, which are often represented by ordinary differential equations and maps. When nonlinear circuits are mapped into dimensional dynamical systems for further nonlinear analysis, the physical parameters of electric components, e.g. capacitor, inductor, resistance, memristor, can also be replaced by dynamical parameters for possible adjustment. Slight change for some bifurcation parameters can induce distinct mode transition and dynamics change in the chaotic systems only when the parameter is adjustable and controllable. In this paper, a thermistor is included into the chaotic Chua circuit and the temperature effect is considered by investigating the mode transition in oscillation and the dependence of Hamilton energy on parameters setting in thermistor. Furthermore, the temperature of thermistor is adjusted for finding possible synchronization between two chaotic Chua circuits connected by a thermistor. When the coupling channel via thermistor connection is activated, two identical Chua circuits (periodical or chaotic oscillation) can reach complete synchronization. In particular, two periodical Chua circuits can be coupled to present chaotic synchronization by taming parameters in thermistor of coupling channel. However, phase synchronization is reached while complete synchronization becomes difficult when the coupling channel is activated to coupling a periodical Chua circuit and a chaotic Chua circuit. It can give guidance for further control of firing behaviors in neural circuits when the thermistor can capture the heat effectively.

2020 ◽  
Vol 34 (09) ◽  
pp. 2050074
Author(s):  
Siyu Ma ◽  
Ping Zhou ◽  
Jun Ma ◽  
Chunni Wang

A variety of electric components can be used to bridge connection to the nonlinear circuits, and continuous pumping and consumption of energy are critical for voltage balance between the output end. The realization and stability of synchronization are mainly dependent on the physical properties of coupling channel, which can be built by using different electric components such as resistor, capacitor, induction coil and even memristor. In this paper, a memristive nonlinear circuit developed from Chua circuit is presented for investigation of synchronization, and capacitor, induction coil are jointed with resistor for building artificial synapse which connects one output of two identical memristive circuits. The capacitance and inductance of the coupling channel are carefully adjusted with slight step increase to estimate the threshold of coupling intensity supporting complete synchronization. As a result, the saturation gain method applied to realize the synchronization between chaotic circuits and physical mechanism is presented.


2003 ◽  
Vol 28 (12) ◽  
pp. 1013 ◽  
Author(s):  
Muhan Choi ◽  
K. V. Volodchenko ◽  
Sunghwan Rim ◽  
Won-Ho Kye ◽  
Chil-Min Kim ◽  
...  

2006 ◽  
Vol 16 (10) ◽  
pp. 2843-2853
Author(s):  
V. V. KLINSHOV ◽  
V. B. KAZANTSEV ◽  
V. I. NEKORKIN

The problem of phase synchronization of Chua's chaotic oscillators is investigated. We consider Chua's circuit when it exhibits a chaotic attractor and apply a single pulse stimulus. It is shown that under certain conditions the system displays self-referential phase reset (SPR) phenomenon. This is a case when the reset phase of the chaotic oscillation is independent on the initial phase, hence on the time moment when the stimulus has been applied. In an ensemble of chaotic oscillators simultaneously stimulated, the SPR yields mutual phase coherence or synchronization between the units. We describe basic dynamical mechanisms of the effect and show how it can be used for controllable cluster formation and for the control of chaotic dynamics.


2002 ◽  
Vol 66 (1) ◽  
Author(s):  
Sunghwan Rim ◽  
Inbo Kim ◽  
Pilshik Kang ◽  
Young-Jai Park ◽  
Chil-Min Kim

2018 ◽  
Vol 16 (04) ◽  
pp. 525-563 ◽  
Author(s):  
Seung-Yeal Ha ◽  
Hwa Kil Kim ◽  
Jinyeong Park

The synchronous dynamics of many limit-cycle oscillators can be described by phase models. The Kuramoto model serves as a prototype model for phase synchronization and has been extensively studied in the last 40 years. In this paper, we deal with the complete synchronization problem of the Kuramoto model with frustrations on a complete graph. We study the robustness of complete synchronization with respect to the network structure and the interaction frustrations, and provide sufficient frameworks leading to the complete synchronization, in which all frequency differences of oscillators tend to zero asymptotically. For a uniform frustration and unit capacity, we extend the applicable range of initial configurations for the complete synchronization to be distributed on larger arcs than a half circle by analyzing the detailed dynamics of the order parameters. This improves the earlier results [S.-Y. Ha, H. Kim and J. Park, Remarks on the complete frequency synchronization of Kuramoto oscillators, Nonlinearity 28 (2015) 1441–1462; Z. Li and S.-Y. Ha, Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia, Math. Models Methods Appl. Sci. 26 (2016) 357–382.] which can be applicable only for initial configurations confined in a half circle.


2021 ◽  
Vol 16 (2) ◽  
Author(s):  
H. Shameem Banu ◽  
P.S. Sheik Uduman

This paper seeks to address the phase synchronization phenomenon using the drive-response concept, in our proposed model, State Controlled Cellular Neural Network (SC-CNN) based on variant of MuraliLakshmanan-Chua (MLCV) circuit. Using this unidirectionally coupled chaotic non autonomous circuits, we described the transition of unsynchronous to synchronous state, by numerical simulation method as well as the results are confirmed by solving explicit analytical solution. In this aspect, the system undergoes the new effect of phase synchronization (PS) phenomenon have been observed before complete synchronization (CS) state. To characterize these phenomena by the phase portraits and the time series plots. Also particularly characterize for PS by the method of partial Poincare section map using phase difference versus time, numerically and analytically. The study of dynamics involved in SC-CNN circuit systems, mainly applicable in the field of neurosciences and in telecommunication fields.


Author(s):  
Vladimir Vladimirovich Astakhov ◽  
◽  
Sergei Vladimirovich Astakhov ◽  
E. I. Nekhodtseva ◽  
A. V. Shabunin ◽  
...  

2002 ◽  
Vol 7 (4) ◽  
pp. 215-229 ◽  
Author(s):  
Vladimir Astakhov ◽  
Alexey Shabunin ◽  
Alexander Klimshin ◽  
Vadim Anishchenko

We consider in-phase and antiphase synchronization of chaos in a system of coupled cubic maps. Regions of stability and robustness of the regime of in-phase complete synchronization was found. It was demonstrated that the loss of the synchronization is accompanied by bubbling and riddling phenomena. The mechanisms of these phenomena are connected with bifurcations of the main family of periodic orbits and orbits appeared from them. We found that in spite of the in-phase synchronization, the antiphase self-synchronization of chaos is impossible for discrete maps with symmetric diffusive coupling. For achieving antiphase synchronization we used method of controlled synchronization by addition feedback. The region of the controlled antiphase synchronization and phenomena which accompany the loss of the synchronization are presented.


2021 ◽  
Author(s):  
Shuai Wang ◽  
Yong Li

Abstract In this paper, we try to discuss the mechanism of synchronization or cluster synchronization in the coupled Van der Pol oscillator networks with different topology types by using the theory of rotating periodic solutions. The synchronous solutions here are transformed into rotating periodic solutions of some dynamical systems. By analyzing the bifurcation of rotating periodic solutions, the critical conditions of synchronous solutions are given in three different networks. We use the rotating periodic matrix in the rotating periodic theory to judge various types of synchronization phenomena, such as complete synchronization, anti-phase synchronization, periodic synchronization, or cluster synchronization. All rotating periodic matrices which satisfy the exchange invariance of multiple oscillators form special groups in these networks. By using the conjugate classes of these groups, we obtain various possible synchronization solutions in the three networks. In particular, we find symmetry has different effects on synchronization in different networks. The network with better symmetry has more elements in the corresponding group, which may have more types of synchronous solutions. However, different types of symmetry may get the same type of synchronous solutions or different types of synchronous solutions, depending on whether their corresponding rotating periodic matrices are similar.


Sign in / Sign up

Export Citation Format

Share Document