EBH-DBR: energy-balanced hybrid depth-based routing protocol for underwater wireless sensor networks

2020 ◽  
pp. 2150061
Author(s):  
Rakesh Kumar ◽  
Diwakar Bhardwaj ◽  
Manas Kumar Mishra

Recently, applications of underwater wireless sensor networks like environment monitoring, underwater life imaging, tactical surveillance, ocean floor monitoring demand a persistent network period. However, underwater wireless sensor networks face many design challenges like unreliable link, high packet drop rate, inadequate bandwidth, restricted battery power, high attenuation, etc. Therefore, to prolong the network lifespan, energy efficient as well as energy balanced both types of approach is equally demanded. An energy-balanced hybrid transmission approach is proposed in this article, which uses depth information in place of location to transmit data packets. It uses some parameters like depth of the sensor nodes, residual energy of the node, and reliability of the link to select the relay node to forward data packets. In the proposal network divided into the slices of the same width, to control the hop-count as well as to balance the energy consumption of the sensor nodes participating in data transmission, and also prolonging the network lifespan. The effectiveness of the proposal is validated through extensive simulation and results show that the EBH-DBR outperforms its counterpart techniques in terms of network lifespan, energy consumption, throughput, and transmission loss.

2017 ◽  
Vol 13 (2) ◽  
pp. 155014771769198
Author(s):  
Dongwei Li ◽  
Jingli Du ◽  
Linfeng Liu

The underwater wireless sensor networks composed of sensor nodes are deployed underwater for monitoring and gathering submarine data. Since the underwater environment is usually unpredictable, making the nodes move or be damaged easily, such that there are several vital objectives in the data forwarding issue, such as the delivery success rate, the error rate, and the energy consumption. To this end, we propose a data forwarding algorithm based on Markov thought, which logically transforms the underwater three-dimensional deployment model into a two-dimensional model, and thus the nodes are considered to be hierarchically deployed. The data delivery is then achieved through a “bottom to top” forwarding mode, where the delivery success rate is improved and the energy consumption is reduced because the established paths are more stable, and the proposed algorithm is self-adaptive to the dynamic routing loads.


Information ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 135 ◽  
Author(s):  
Vicente Casares-Giner ◽  
Tatiana Inés Navas ◽  
Dolly Smith Flórez ◽  
Tito R. Vargas H.

In this work it is considered a circular Wireless Sensor Networks (WSN) in a planar structure with uniform distribution of the sensors and with a two-level hierarchical topology. At the lower level, a cluster configuration is adopted in which the sensed information is transferred from sensor nodes to a cluster head (CH) using a random access protocol (RAP). At CH level, CHs transfer information, hop-by-hop, ring-by-ring, towards to the sink located at the center of the sensed area using TDMA as MAC protocol. A Markovian model to evaluate the end-to-end (E2E) transfer delay is formulated. In addition to other results such as the well know energy hole problem, the model reveals that for a given radial distance between the CH and the sink, the transfer delay depends on the angular orientation between them. For instance, when two rings of CHs are deployed in the WSN area, the E2E delay of data packets generated at ring 2 and at the “west” side of the sink, is 20% higher than the corresponding E2E delay of data packets generated at ring 2 and at the “east” side of the sink. This asymmetry can be alleviated by rotating from time to time the allocation of temporary slots to CHs in the TDMA communication. Also, the energy consumption is evaluated and the numerical results show that for a WSN with a small coverage area, say a radio of 100 m, the energy saving is more significant when a small number of rings are deployed, perhaps none (a single cluster in which the sink acts as a CH). Conversely, topologies with a large number of rings, say 4 or 5, offer a better energy performance when the service WSN covers a large area, say radial distances greater than 400 m.


2019 ◽  
Vol 15 (6) ◽  
pp. 155014771985424 ◽  
Author(s):  
Munsif Ali ◽  
Anwar Khan ◽  
Hasan Mahmood ◽  
Naeeem Bhatti

In underwater wireless sensor networks, stability and reliability of the network are of paramount importance. Stability of the network ensures persistent operation of the network that, in consequence, avoids data loss when nodes consume all the battery power and subject to death. Particularly, nodes bearing a low pressure of water die early in the usual routing approach due to being preferred choices for data routing. Reliability ensures minimization of the adverse channel effects on data packets so that the desired information is easily extracted from these packets. This article proposes two routing protocols for underwater wireless sensor networks: reliable and stability-aware routing and cooperative reliable and stability-aware routing. In reliable and stability-aware routing, energy assignment to a node is made on the basis of its depth. Sensor nodes having the lowest depth are assigned the highest amount of energy. This energy assignment is called the energy grade of a node and five energy grades are formed in the proposed network from top to bottom. The energy grade along with energy residing in a node battery and its depth decide its selection as a forwarder node. The reliable and stability-aware routing uses only a single link to forward packets. Such a link may not be reliable always. To overcome this issue, the cooperative reliable and stability-aware routing is proposed which introduces cooperative routing to reliable and stability-aware routing. Cooperative routing involves the reception of multiple copies of data symbols by destination. This minimizes the adverse channel effects on data packets and makes the information extraction convenient and less cumbersome at the final destination. Unlike the conventional approach, the proposed schemes do not take into account the coordinates of nodes for defining the routing trajectories, which is challenging in underwater medium. Simulation results reveal a better behavior of the proposed protocols than some competitive schemes in terms of providing stability to the network, packet transfer to the ultimate destination, and latency.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 256 ◽  
Author(s):  
Haotian Chang ◽  
Jing Feng ◽  
Chaofan Duan

Data forwarding for underwater wireless sensor networks has drawn large attention in the past decade. Due to the harsh underwater environments for communication, a major challenge of Underwater Wireless Sensor Networks (UWSNs) is the timeliness. Furthermore, underwater sensor nodes are energy constrained, so network lifetime is another obstruction. Additionally, the passive mobility of underwater sensors causes dynamical topology change of underwater networks. It is significant to consider the timeliness and energy consumption of data forwarding in UWSNs, along with the passive mobility of sensor nodes. In this paper, we first formulate the problem of data forwarding, by jointly considering timeliness and energy consumption under a passive mobility model for underwater wireless sensor networks. We then propose a reinforcement learning-based method for the problem. We finally evaluate the performance of the proposed method through simulations. Simulation results demonstrate the validity of the proposed method. Our method outperforms the benchmark protocols in both timeliness and energy efficiency. More specifically, our method gains 83.35% more value of information and saves up to 75.21% energy compared with a classic lifetime-extended routing protocol (QELAR).


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7278
Author(s):  
Ahmad M. Khasawneh ◽  
Omprakash Kaiwartya ◽  
Jaime Lloret ◽  
Hayfa Y. Abuaddous ◽  
Laith Abualigah ◽  
...  

In this paper, we propose a non-localization routing protocol for underwater wireless sensor networks (UWSNs), namely, the triangle metric based multi-layered routing protocol (TM2RP). The main idea of the proposed TM2RP is to utilize supernodes along with depth information and residual energy to balance the energy consumption between sensors. Moreover, TM2RP is the first multi-layered and multi-metric pressure routing protocol that considers link quality with residual energy to improve the selection of next forwarding nodes with more reliable and energy-efficient links. The aqua-sim package based on the ns-2 simulator was used to evaluate the performance of the proposed TM2RP. The obtained results were compared to other similar methods such as depth based routing (DBR) and multi-layered routing protocol (MRP). Simulation results showed that the proposed protocol (TM2RP) obtained better outcomes in terms of energy consumption, network lifetime, packet delivery ratio, and end-to-end delay.


2017 ◽  
Vol 13 (7) ◽  
pp. 155014771771718 ◽  
Author(s):  
Arshad Sher ◽  
Nadeem Javaid ◽  
Irfan Azam ◽  
Hira Ahmad ◽  
Wadood Abdul ◽  
...  

In this article, to monitor the fields with square and circular geometries, three energy-efficient routing protocols are proposed for underwater wireless sensor networks. First one is sparsity-aware energy-efficient clustering, second one is circular sparsity-aware energy-efficient clustering, and the third one is circular depth–based sparsity-aware energy-efficient clustering routing protocol. All three protocols are proposed to minimize the energy consumption of sparse regions, whereas sparsity search algorithm is proposed to find sparse regions and density search algorithm is used to find dense regions of the network field. Moreover, clustering is performed in dense regions to minimize redundant transmissions of a data packet, while sink mobility is exploited to collect data from sensor nodes with an objective of minimum energy consumption. A depth threshold [Formula: see text] value is also used to minimize number of hops between source and destination for less energy consumption. Simulation results show that our schemes perform better than their counter-part schemes (depth-based routing and energy-efficient depth-based routing) in terms of energy efficiency.


Author(s):  
Chinedu Duru ◽  
Neco Ventura ◽  
Mqhele Dlodlo

Background: Wireless Sensor Networks (WSNs) have been researched to be one of the ground-breaking technologies for the remote monitoring of pipeline infrastructure of the Oil and Gas industry. Research have also shown that the preferred deployment approach of the sensor network on pipeline structures follows a linear array of nodes, placed a distance apart from each other across the infrastructure length. The linear array topology of the sensor nodes gives rise to the name Linear Wireless Sensor Networks (LWSNs) which over the years have seen themselves being applied to pipelines for effective remote monitoring and surveillance. This paper aims to investigate the energy consumption issue associated with LWSNs deployed in cluster-based fashion along a pipeline infrastructure. Methods: Through quantitative analysis, the study attempts to approach the investigation conceptually focusing on mathematical analysis of proposed models to bring about conjectures on energy consumption performance. Results: From the derived analysis, results have shown that energy consumption is diminished to a minimum if there is a sink for every placed sensor node in the LWSN. To be precise, the analysis conceptually demonstrate that groups containing small number of nodes with a corresponding sink node is the approach to follow when pursuing a cluster-based LWSN for pipeline monitoring applications. Conclusion: From the results, it is discovered that energy consumption of a deployed LWSN can be decreased by creating groups out of the total deployed nodes with a sink servicing each group. In essence, the smaller number of nodes each group contains with a corresponding sink, the less energy consumed in total for the entire LWSN. This therefore means that a sink for every individual node will attribute to minimum energy consumption for every non-sink node. From the study, it can be concurred that energy consumption of a LWSN is inversely proportional to the number of sinks deployed and hence the number of groups created.


Author(s):  
Rekha Goyat ◽  
Mritunjay Kumar Rai ◽  
Gulshan Kumar ◽  
Hye-Jin Kim ◽  
Se-Jung Lim

Background: Wireless Sensor Networks (WSNs) is considered one of the key research area in the recent. Various applications of WSNs need geographic location of the sensor nodes. Objective: Localization in WSNs plays an important role because without knowledge of sensor nodes location the information is useless. Finding the accurate location is very crucial in Wireless Sensor Networks. The efficiency of any localization approach is decided on the basis of accuracy and localization error. In range-free localization approaches, the location of unknown nodes are computed by collecting the information such as minimum hop count, hop size information from neighbors nodes. Methods: Although various studied have been done for computing the location of nodes but still, it is an enduring research area. To mitigate the problems of existing algorithms, a range-free Improved Weighted Novel DV-Hop localization algorithm is proposed. Main motive of the proposed study is to reduced localization error with least energy consumption. Firstly, the location information of anchor nodes is broadcasted upto M hop to decrease the energy consumption. Further, a weight factor and correction factor are introduced which refine the hop size of anchor nodes. Results: The refined hop size is further utilized for localization to reduces localization error significantly. The simulation results of the proposed algorithm are compared with other existing algorithms for evaluating the effectiveness and the performance. The simulated results are evaluated in terms localization error and computational cost by considering different parameters such as node density, percentage of anchor nodes, transmission range, effect of sensing field and effect of M on localization error. Further statistical analysis is performed on simulated results to prove the validation of proposed algorithm. A paired T-test is applied on localization error and localization time. The results of T-test depicts that the proposed algorithm significantly improves the localization accuracy with least energy consumption as compared to other existing algorithms like DV-Hop, IWCDV-Hop, and IDV-Hop. Conclusion: From the simulated results, it is concluded that the proposed algorithm offers 36% accurate localization than traditional DV-Hop and 21 % than IDV-Hop and 13% than IWCDV-Hop.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1368 ◽  
Author(s):  
Luoheng Yan ◽  
Yuyao He ◽  
Zhongmin Huangfu

The underwater wireless sensor networks (UWSNs) have been applied in lots of fields such as environment monitoring, military surveillance, data collection, etc. Deployment of sensor nodes in 3D UWSNs is a crucial issue, however, it is a challenging problem due to the complex underwater environment. This paper proposes a growth ring style uneven node depth-adjustment self-deployment optimization algorithm (GRSUNDSOA) to improve the coverage and reliability of UWSNs, meanwhile, and to solve the problem of energy holes. In detail, a growth ring style-based scheme is proposed for constructing the connective tree structure of sensor nodes and a global optimal depth-adjustment algorithm with the goal of comprehensive optimization of both maximizing coverage utilization and energy balance is proposed. Initially, the nodes are scattered to the water surface to form a connected network on this 2D plane. Then, starting from sink node, a growth ring style increment strategy is presented to organize the common nodes as tree structures and each root of subtree is determined. Meanwhile, with the goal of global maximizing coverage utilization and energy balance, all nodes depths are computed iteratively. Finally, all the nodes dive to the computed position once and a 3D underwater connected network with non-uniform distribution and balanced energy is constructed. A series of simulation experiments are performed. The simulation results show that the coverage and reliability of UWSN are improved greatly under the condition of full connectivity and energy balance, and the issue of energy hole can be avoided effectively. Therefore, GRSUNDSOA can prolong the lifetime of UWSN significantly.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Mingxin Yang ◽  
Jingsha He ◽  
Yuqiang Zhang

Due to limited resources in wireless sensor nodes, energy efficiency is considered as one of the primary constraints in the design of the topology of wireless sensor networks (WSNs). Since data that are collected by wireless sensor nodes exhibit the characteristics of temporal association, data fusion has also become a very important means of reducing network traffic as well as eliminating data redundancy as far as data transmission is concerned. Another reason for data fusion is that, in many applications, only some of the data that are collected can meet the requirements of the sink node. In this paper, we propose a method to calculate the number of cluster heads or data aggregators during data fusion based on the rate-distortion function. In our discussion, we will first establish an energy consumption model and then describe a method for calculating the number of cluster heads from the point of view of reducing energy consumption. We will also show through theoretical analysis and experimentation that the network topology design based on the rate-distortion function is indeed more energy-efficient.


Sign in / Sign up

Export Citation Format

Share Document