scholarly journals Cooperative, reliable, and stability-aware routing for underwater wireless sensor networks

2019 ◽  
Vol 15 (6) ◽  
pp. 155014771985424 ◽  
Author(s):  
Munsif Ali ◽  
Anwar Khan ◽  
Hasan Mahmood ◽  
Naeeem Bhatti

In underwater wireless sensor networks, stability and reliability of the network are of paramount importance. Stability of the network ensures persistent operation of the network that, in consequence, avoids data loss when nodes consume all the battery power and subject to death. Particularly, nodes bearing a low pressure of water die early in the usual routing approach due to being preferred choices for data routing. Reliability ensures minimization of the adverse channel effects on data packets so that the desired information is easily extracted from these packets. This article proposes two routing protocols for underwater wireless sensor networks: reliable and stability-aware routing and cooperative reliable and stability-aware routing. In reliable and stability-aware routing, energy assignment to a node is made on the basis of its depth. Sensor nodes having the lowest depth are assigned the highest amount of energy. This energy assignment is called the energy grade of a node and five energy grades are formed in the proposed network from top to bottom. The energy grade along with energy residing in a node battery and its depth decide its selection as a forwarder node. The reliable and stability-aware routing uses only a single link to forward packets. Such a link may not be reliable always. To overcome this issue, the cooperative reliable and stability-aware routing is proposed which introduces cooperative routing to reliable and stability-aware routing. Cooperative routing involves the reception of multiple copies of data symbols by destination. This minimizes the adverse channel effects on data packets and makes the information extraction convenient and less cumbersome at the final destination. Unlike the conventional approach, the proposed schemes do not take into account the coordinates of nodes for defining the routing trajectories, which is challenging in underwater medium. Simulation results reveal a better behavior of the proposed protocols than some competitive schemes in terms of providing stability to the network, packet transfer to the ultimate destination, and latency.

Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 498 ◽  
Author(s):  
Sahar Shah ◽  
Anwar Khan ◽  
Ihsan Ali ◽  
Kwang-Man Ko ◽  
Hasan Mahmood

Mitigation of channel unfavorable circumstances during data routing in underwater wireless sensor networks (UWSNs) has utmost significance. It guarantees saving packet corruption along unfavorable channels so that vital data is not lost or become meaningless. This paper proposes two routing protocols for UWSNs: localization free energy efficient routing (LFEER) and its improved version, localization free energy efficient cooperative routing (Co-LFEER). The LFEER makes decision of choosing a relay based on its maximum residual energy, number of hops and the bit error rate of the link over which packets are transmitted. These metrics are chosen to save packets from corruption to the maximum limit and maintain stable paths (where nodes do not die soon). Since a single link is used in the LFEER for packets forwarding, the link may become worse with changing circumstances of the channel. To deal with this issue, cooperative routing is added to the LFFER to construct the Co-LFEER protocol, in which some copies of packets are received by destination to decide about packets quality. Converse to some prevalent protocols, both LFEER and Co-LFEER are independent of knowing the sensor nodes’ positions, which increases computational complexity and wasteful utilization of resources. Based on extensive simulations, the proposed schemes are better than Co-DBR in reducing energy utilization and advancing packets to the desired destination.


2020 ◽  
pp. 2150061
Author(s):  
Rakesh Kumar ◽  
Diwakar Bhardwaj ◽  
Manas Kumar Mishra

Recently, applications of underwater wireless sensor networks like environment monitoring, underwater life imaging, tactical surveillance, ocean floor monitoring demand a persistent network period. However, underwater wireless sensor networks face many design challenges like unreliable link, high packet drop rate, inadequate bandwidth, restricted battery power, high attenuation, etc. Therefore, to prolong the network lifespan, energy efficient as well as energy balanced both types of approach is equally demanded. An energy-balanced hybrid transmission approach is proposed in this article, which uses depth information in place of location to transmit data packets. It uses some parameters like depth of the sensor nodes, residual energy of the node, and reliability of the link to select the relay node to forward data packets. In the proposal network divided into the slices of the same width, to control the hop-count as well as to balance the energy consumption of the sensor nodes participating in data transmission, and also prolonging the network lifespan. The effectiveness of the proposal is validated through extensive simulation and results show that the EBH-DBR outperforms its counterpart techniques in terms of network lifespan, energy consumption, throughput, and transmission loss.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 421 ◽  
Author(s):  
Anwar Khan ◽  
Saleh M. Altowaijri ◽  
Ihsan Ali ◽  
Atiq Rahman

The protocols in underwater acoustic wireless sensor networks (UAWSNs) that address reliability in packets forwarding usually consider the connectivity of the routing paths up to one- or two-hops. Since senor nodes are connected with one another using other nodes in their neighborhood, such protocols have compromised reliability. It is because these protocols do not guarantee the presence of neighbors beyond the selected one- or two-hops for connectivity and path establishment. This is further worsened by the harshness and unpredictability of the underwater scenario. In addition, establishment of the routing paths usually requires the nodes’ undersea geographical locations, which is infeasible because currents in water cause the nodes to move from one position to another. To overcome these challenges, this paper presents two routing schemes for UAWSNs: reliability-aware routing (RAR) and reliability-aware cooperative routing with adaptive amplification (RACAA). RAR considers complete path connectivity to advance packets to sea surface. This overcomes packets loss when connectivity is not established and forwarder nodes are not available for data routing. For all the established paths, the probability of successfully transmitting data packets is calculated. This avoids the adverse channel effects. However, sea channel is unpredictable and fluctuating and its properties may change after its computation and prior to information transmission. Therefore, cooperative routing is introduced to RAR with adaptive power control of relays, which makes the RACCA protocol. In RACAA, a relay node increases its transmit power than normal when the error in the data; it receives from the sender, is more than 50 % before transferring it further to destination. This further increases the reliability when such packets are forwarded. Unlike the conventional approach, the proposed protocols are independent of knowing the geographical locations of nodes in establishing the routes, which is computationally challenging due to nodes’ movements with ocean currents and tides. Simulation results exhibit that RAR and RACAA outperform the counterpart scheme in delivering packets to the water surface.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1368 ◽  
Author(s):  
Luoheng Yan ◽  
Yuyao He ◽  
Zhongmin Huangfu

The underwater wireless sensor networks (UWSNs) have been applied in lots of fields such as environment monitoring, military surveillance, data collection, etc. Deployment of sensor nodes in 3D UWSNs is a crucial issue, however, it is a challenging problem due to the complex underwater environment. This paper proposes a growth ring style uneven node depth-adjustment self-deployment optimization algorithm (GRSUNDSOA) to improve the coverage and reliability of UWSNs, meanwhile, and to solve the problem of energy holes. In detail, a growth ring style-based scheme is proposed for constructing the connective tree structure of sensor nodes and a global optimal depth-adjustment algorithm with the goal of comprehensive optimization of both maximizing coverage utilization and energy balance is proposed. Initially, the nodes are scattered to the water surface to form a connected network on this 2D plane. Then, starting from sink node, a growth ring style increment strategy is presented to organize the common nodes as tree structures and each root of subtree is determined. Meanwhile, with the goal of global maximizing coverage utilization and energy balance, all nodes depths are computed iteratively. Finally, all the nodes dive to the computed position once and a 3D underwater connected network with non-uniform distribution and balanced energy is constructed. A series of simulation experiments are performed. The simulation results show that the coverage and reliability of UWSN are improved greatly under the condition of full connectivity and energy balance, and the issue of energy hole can be avoided effectively. Therefore, GRSUNDSOA can prolong the lifetime of UWSN significantly.


2017 ◽  
Vol 92 ◽  
pp. 31-41 ◽  
Author(s):  
Nadeem Javaid ◽  
Sheraz Hussain ◽  
Ashfaq Ahmad ◽  
Muhammad Imran ◽  
Abid Khan ◽  
...  

2017 ◽  
Vol 13 (2) ◽  
pp. 155014771769198
Author(s):  
Dongwei Li ◽  
Jingli Du ◽  
Linfeng Liu

The underwater wireless sensor networks composed of sensor nodes are deployed underwater for monitoring and gathering submarine data. Since the underwater environment is usually unpredictable, making the nodes move or be damaged easily, such that there are several vital objectives in the data forwarding issue, such as the delivery success rate, the error rate, and the energy consumption. To this end, we propose a data forwarding algorithm based on Markov thought, which logically transforms the underwater three-dimensional deployment model into a two-dimensional model, and thus the nodes are considered to be hierarchically deployed. The data delivery is then achieved through a “bottom to top” forwarding mode, where the delivery success rate is improved and the energy consumption is reduced because the established paths are more stable, and the proposed algorithm is self-adaptive to the dynamic routing loads.


Information ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 135 ◽  
Author(s):  
Vicente Casares-Giner ◽  
Tatiana Inés Navas ◽  
Dolly Smith Flórez ◽  
Tito R. Vargas H.

In this work it is considered a circular Wireless Sensor Networks (WSN) in a planar structure with uniform distribution of the sensors and with a two-level hierarchical topology. At the lower level, a cluster configuration is adopted in which the sensed information is transferred from sensor nodes to a cluster head (CH) using a random access protocol (RAP). At CH level, CHs transfer information, hop-by-hop, ring-by-ring, towards to the sink located at the center of the sensed area using TDMA as MAC protocol. A Markovian model to evaluate the end-to-end (E2E) transfer delay is formulated. In addition to other results such as the well know energy hole problem, the model reveals that for a given radial distance between the CH and the sink, the transfer delay depends on the angular orientation between them. For instance, when two rings of CHs are deployed in the WSN area, the E2E delay of data packets generated at ring 2 and at the “west” side of the sink, is 20% higher than the corresponding E2E delay of data packets generated at ring 2 and at the “east” side of the sink. This asymmetry can be alleviated by rotating from time to time the allocation of temporary slots to CHs in the TDMA communication. Also, the energy consumption is evaluated and the numerical results show that for a WSN with a small coverage area, say a radio of 100 m, the energy saving is more significant when a small number of rings are deployed, perhaps none (a single cluster in which the sink acts as a CH). Conversely, topologies with a large number of rings, say 4 or 5, offer a better energy performance when the service WSN covers a large area, say radial distances greater than 400 m.


Author(s):  
Muhammad Ayaz ◽  
Azween Abdullah ◽  
Ibrahima Faye

Underwater Wireless Sensor Networks (UWSNs) are finding different applications for offshore exploration and ocean monitoring. In most of these applications, the network consists of a significant number of sensor nodes deployed at different depth levels throughout the area of interest. Sensor nodes on the sea bed cannot communicate directly with the nodes near the surface level, so they require multihop communication assisted by an appropriate routing scheme. However, this appropriateness not only depends on network resources and application requirements, but environment constraints are involved as well. These factors all provide a platform where a resource aware routing strategy plays a vital role in fulfilling different application requirements with dynamic environment conditions. Realizing this fact, much of the attention has been given to construct a reliable scheme, and many routing protocols have been proposed in order to provide efficient route discoveries between the source and sink. In this chapter, the authors present a review and comparison of different algorithms proposed recently for underwater sensor networks. Later on, all of these have been classified into different groups according to their characteristics and functionalities.


Sign in / Sign up

Export Citation Format

Share Document