WHO: A New Evolutionary Algorithm Bio-Inspired by Wildebeests with a Case Study on Bank Customer Segmentation

Author(s):  
Mohammad Mahdi Motevali ◽  
Ali Mohammadi Shanghooshabad ◽  
Reza Zohouri Aram ◽  
Hamidreza Keshavarz

Numerous evolutionary algorithms have been proposed which are inspired by the amazing lives of creatures, such as animals, insects, and birds. Each inspired algorithm has its own advantages and disadvantages, and has its own way to accomplish exploration and exploitation. In this paper, a new evolutionary algorithm with novel concepts, called Wildebeests Herd Optimization (WHO), is proposed. This algorithm is inspired by the splendid life of wildebeests in Africa. Moving and migration are inseparable from wildebeests’ lives. When a wildebeest wants to choose its path during migration, it considers the best path known to itself, the location of the more mature wildebeests in the crowd, and the direction of wildebeests with high mobility. The WHO algorithm imitates these traits, and can concurrently explore and exploit the search space. For validating WHO, it is applied to optimization problems and data mining tasks. It is demonstrated that WHO outperforms other evolutionary algorithms, such as genetic algorithm (GA) and particle swarm optimization, in the assessed problems. Then, WHO is applied to the customer segmentation problem. Customer segmentation is one of the most important tasks of data mining, especially in the banking sector. In this paper, the customers of a bank with current accounts are segmented using WHO based on four aspects: profitability, cost, loyalty and credit; some of these aspects are calculated in a novel way. The results were welcome by the bank authorities.

2021 ◽  
Vol 6 (4 (114)) ◽  
pp. 6-14
Author(s):  
Maan Afathi

The main purpose of using the hybrid evolutionary algorithm is to reach optimal values and achieve goals that traditional methods cannot reach and because there are different evolutionary computations, each of them has different advantages and capabilities. Therefore, researchers integrate more than one algorithm into a hybrid form to increase the ability of these algorithms to perform evolutionary computation when working alone. In this paper, we propose a new algorithm for hybrid genetic algorithm (GA) and particle swarm optimization (PSO) with fuzzy logic control (FLC) approach for function optimization. Fuzzy logic is applied to switch dynamically between evolutionary algorithms, in an attempt to improve the algorithm performance. The HEF hybrid evolutionary algorithms are compared to GA, PSO, GAPSO, and PSOGA. The comparison uses a variety of measurement functions. In addition to strongly convex functions, these functions can be uniformly distributed or not, and are valuable for evaluating our approach. Iterations of 500, 1000, and 1500 were used for each function. The HEF algorithm’s efficiency was tested on four functions. The new algorithm is often the best solution, HEF accounted for 75 % of all the tests. This method is superior to conventional methods in terms of efficiency


2003 ◽  
Vol 11 (2) ◽  
pp. 151-167 ◽  
Author(s):  
Andrea Toffolo ◽  
Ernesto Benini

A key feature of an efficient and reliable multi-objective evolutionary algorithm is the ability to maintain genetic diversity within a population of solutions. In this paper, we present a new diversity-preserving mechanism, the Genetic Diversity Evaluation Method (GeDEM), which considers a distance-based measure of genetic diversity as a real objective in fitness assignment. This provides a dual selection pressure towards the exploitation of current non-dominated solutions and the exploration of the search space. We also introduce a new multi-objective evolutionary algorithm, the Genetic Diversity Evolutionary Algorithm (GDEA), strictly designed around GeDEM and then we compare it with other state-of-the-art algorithms on a well-established suite of test problems. Experimental results clearly indicate that the performance of GDEA is top-level.


1999 ◽  
Vol 7 (1) ◽  
pp. 19-44 ◽  
Author(s):  
Slawomir Koziel ◽  
Zbigniew Michalewicz

During the last five years, several methods have been proposed for handling nonlinear constraints using evolutionary algorithms (EAs) for numerical optimization problems. Recent survey papers classify these methods into four categories: preservation of feasibility, penalty functions, searching for feasibility, and other hybrids. In this paper we investigate a new approach for solving constrained numerical optimization problems which incorporates a homomorphous mapping between n-dimensional cube and a feasible search space. This approach constitutes an example of the fifth decoder-based category of constraint handling techniques. We demonstrate the power of this new approach on several test cases and discuss its further potential.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1866
Author(s):  
Kei Ohnishi ◽  
Kouta Hamano ◽  
Mario Koeppen

Recently, evolutionary algorithms that can efficiently solve decomposable binary optimization problems have been developed. They are so-called model-based evolutionary algorithms, which build a model for generating solution candidates by applying a machine learning technique to a population. Their central procedure is linkage detection that reveals a problem structure, that is, how the entire problem consists of sub-problems. However, the model-based evolutionary algorithms have been shown to be ineffective for problems that do not have relevant structures or those whose structures are hard to identify. Therefore, evolutionary algorithms that can solve both types of problems quickly, reliably, and accurately are required. The objective of the paper is to investigate whether the evolutionary algorithm evolving developmental timings (EDT) that we previously proposed can be the desired one. The EDT makes some variables values more quickly converge than the remains for any problems, and then, decides values of the remains to obtain a higher fitness value under the fixation of the variables values. In addition, factors to decide which variable values converge more quickly, that is, developmental timings are evolution targets. Simulation results reveal that the EDT has worse performance than the linkage tree genetic algorithm (LTGA), which is one of the state-of-the-art model-based evolutionary algorithms, for decomposable problems and also that the difference in the performance between them becomes smaller for problems with overlaps among linkages and also that the EDT has better performance than the LTGA for problems whose structures are hard to identify. Those results suggest that an appropriate search strategy is different between decomposable problems and those hard to decompose.


1998 ◽  
Vol 6 (2) ◽  
pp. 185-196 ◽  
Author(s):  
Stefan Droste ◽  
Thomas Jansen ◽  
Ingo Wegener

Evolutionary algorithms (EAs) are heuristic randomized algorithms which, by many impressive experiments, have been proven to behave quite well for optimization problems of various kinds. In this paper a rigorous theoretical complexity analysis of the (1 + 1) evolutionary algorithm for separable functions with Boolean inputs is given. Different mutation rates are compared, and the use of the crossover operator is investigated. The main contribution is not the result that the expected run time of the (1 + 1) evolutionary algorithm is Θ(n ln n) for separable functions with n variables but the methods by which this result can be proven rigorously.


2012 ◽  
Vol 220-223 ◽  
pp. 2846-2851
Author(s):  
Si Lian Xie ◽  
Tie Bin Wu ◽  
Shui Ping Wu ◽  
Yun Lian Liu

Evolutionary algorithms are amongst the best known methods of solving difficult constrained optimization problems, for which traditional methods are not applicable. Due to the variability of characteristics in different constrained optimization problems, no single evolutionary with single operator performs consistently over a range of problems. We introduce an algorithm framework that uses multiple search operators in each generation. A composite evolutionary algorithm is proposed in this paper and combined feasibility rule to solve constrained optimization problems. The proposed evolutionary algorithm combines three crossover operators with two mutation operators. The selection criteria based on feasibility of individual is used to deal with the constraints. The proposed method is tested on five well-known benchmark constrained optimization problems, and the experimental results show that it is effective and robust


Author(s):  
Sanjoy Das

Real world optimization problems are often too complex to be solved through analytic means. Evolutionary algorithms are a class of algorithms that borrow paradigms from nature to address them. These are stochastic methods of optimization that maintain a population of individual solutions, which correspond to points in the search space of the problem. These algorithms have been immensely popular as they are derivativefree techniques, are not as prone to getting trapped in local minima, and can be tailored specifically to suit any given problem. The performance of evolutionary algorithms can be improved further by adding a local search component to them. The Nelder-Mead simplex algorithm (Nelder & Mead, 1965) is a simple local search algorithm that has been routinely applied to improve the search process in evolutionary algorithms, and such a strategy has met with great success. In this article, we provide an overview of the various strategies that have been adopted to hybridize two wellknown evolutionary algorithms - genetic algorithms (GA) and particle swarm optimization (PSO).


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Rui Zhang ◽  
Zhiteng Wang ◽  
Hongjun Zhang

This study proposes a novel quantum evolutionary algorithm called four-chain quantum-inspired evolutionary algorithm (FCQIEA) based on the four gene chains encoding method. In FCQIEA, a chromosome comprises four gene chains to expand the search space effectively and promote the evolutionary rate. Different parameters, including rotational angle and mutation probability, have been analyzed for better optimization. Performance comparison with other quantum-inspired evolutionary algorithms (QIEAs), evolutionary algorithms, and different chains of QIEA demonstrates the effectiveness and efficiency of FCQIEA.


2014 ◽  
Vol 555 ◽  
pp. 586-592
Author(s):  
Stanisław Krenich

The paper presents an approach to design optimization using parallel evolutionary algorithms. The only use of a simple evolutionary algorithm in order to generate the optimal solution for complex problems can be ineffective due to long calculation time. Thus a tournament evolutionary algorithm (EA) and a parallel computation method are proposed and used. The proposed EA does not require an analysis of the optimization model for each potential solution from evolutionary populations. The second element of the method consists in parallel running of evolutionary algorithms using multi-threads approach. The experiments were carried out for many different single design optimization problems and two of them are presented in the paper. The first problem considers a task of robot gripper mechanism optimization and the second one deals with the optimization of a shaft based on Finite Element Method analysis. From the generated results it is clear that proposed approach is a very effective tool for solving fairly complicated tasks considering both the accuracy and the time of calculation.


2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Fuqing Zhao ◽  
Wenchang Lei ◽  
Weimin Ma ◽  
Yang Liu ◽  
Chuck Zhang

A fixed evolutionary mechanism is usually adopted in the multiobjective evolutionary algorithms and their operators are static during the evolutionary process, which causes the algorithm not to fully exploit the search space and is easy to trap in local optima. In this paper, a SPEA2 algorithm which is based on adaptive selection evolution operators (AOSPEA) is proposed. The proposed algorithm can adaptively select simulated binary crossover, polynomial mutation, and differential evolution operator during the evolutionary process according to their contribution to the external archive. Meanwhile, the convergence performance of the proposed algorithm is analyzed with Markov chain. Simulation results on the standard benchmark functions reveal that the performance of the proposed algorithm outperforms the other classical multiobjective evolutionary algorithms.


Sign in / Sign up

Export Citation Format

Share Document