An Image Change Detection Algorithm Based on Multi-Feature Self-Attention Fusion Mechanism UNet Network

Author(s):  
Gulnaz Alimjan ◽  
Yiliyaer Jiaermuhamaiti ◽  
Huxidan Jumahong ◽  
Shuangling Zhu ◽  
Pazilat Nurmamat

Various UNet architecture-based image change detection algorithms promote the development of image change detection, but there are still some defects. First, under the encoder–decoder framework, the low-level features are extracted many times in multiple dimensions, which generates redundant information; second, the relationship between each feature layer is not modeled so sufficiently that it cannot produce the optimal feature differentiation representation. This paper proposes a remote image change detection algorithm based on the multi-feature self-attention fusion mechanism UNet network, abbreviated as MFSAF UNet (multi-feature self-attention fusion UNet). We attempt to add multi-feature self-attention mechanism between the encoder and decoder of UNet to obtain richer context dependence and overcome the two above-mentioned restrictions. Since the capacity of convolution-based UNet network is directly proportional to network depth, and a deeper convolutional network means more training parameters, so the convolution of each layer of UNet is replaced as a separated convolution, which makes the entire network to be lighter and the model’s execution efficiency is slightly better than the traditional convolution operation. In addition to these, another innovation point of this paper is using preference to control loss function and meet the demands for different accuracies and recall rates. The simulation test results verify the validity and robustness of this approach.

2005 ◽  
Vol 14 (3) ◽  
pp. 294-307 ◽  
Author(s):  
R.J. Radke ◽  
S. Andra ◽  
O. Al-Kofahi ◽  
B. Roysam

2013 ◽  
Vol 864-867 ◽  
pp. 2808-2811
Author(s):  
Bing Xu ◽  
Zhen De Li

It is difficult for the existing image change detection algorithms to achieve fast change detection, due to their complexities and large calculated quantities. It applied the spatial autocorrelation statistics method in the image change detection, and identified potential changes in the image area by comparing the spatial autocorrelation coefficients of images acquired at different times. With this method utilized in the change detection of the coral reef ecosystem, it detected the changes of two scene TM images. The results have validated the simplicity and accuracy of this method.


Author(s):  
A. W. Lyda ◽  
X. Zhang ◽  
C. L. Glennie ◽  
K. Hudnut ◽  
B. A. Brooks

Remote sensing via LiDAR (Light Detection And Ranging) has proven extremely useful in both Earth science and hazard related studies. Surveys taken before and after an earthquake for example, can provide decimeter-level, 3D near-field estimates of land deformation that offer better spatial coverage of the near field rupture zone than other geodetic methods (e.g., InSAR, GNSS, or alignment array). In this study, we compare and contrast estimates of deformation obtained from different pre and post-event airborne laser scanning (ALS) data sets of the 2014 South Napa Earthquake using two change detection algorithms, Iterative Control Point (ICP) and Particle Image Velocimetry (PIV). The ICP algorithm is a closest point based registration algorithm that can iteratively acquire three dimensional deformations from airborne LiDAR data sets. By employing a newly proposed partition scheme, “moving window,” to handle the large spatial scale point cloud over the earthquake rupture area, the ICP process applies a rigid registration of data sets within an overlapped window to enhance the change detection results of the local, spatially varying surface deformation near-fault. The other algorithm, PIV, is a well-established, two dimensional image co-registration and correlation technique developed in fluid mechanics research and later applied to geotechnical studies. Adapted here for an earthquake with little vertical movement, the 3D point cloud is interpolated into a 2D DTM image and horizontal deformation is determined by assessing the cross-correlation of interrogation areas within the images to find the most likely deformation between two areas. Both the PIV process and the ICP algorithm are further benefited by a presented, novel use of urban geodetic markers. Analogous to the persistent scatterer technique employed with differential radar observations, this new LiDAR application exploits a classified point cloud dataset to assist the change detection algorithms. Ground deformation results and statistics from these techniques are presented and discussed here with supplementary analyses of the differences between techniques and the effects of temporal spacing between LiDAR datasets. Results show that both change detection methods provide consistent near field deformation comparable to field observed offsets. The deformation can vary in quality but estimated standard deviations are always below thirty one centimeters. This variation in quality differentiates the methods and proves that factors such as geodetic markers and temporal spacing play major roles in the outcomes of ALS change detection surveys.


Author(s):  
Ana C. F. Fabrin ◽  
Ricardo D. Molin ◽  
Dimas I. Alves ◽  
Renato Machado ◽  
Fabio M. Bayer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document