Semi-Automatic Extraction and Mapping of Farmlands based on High-Resolution Remote Sensing Images

Author(s):  
Dongsheng Liu ◽  
Ling Han

Extraction of agricultural parcels from high-resolution satellite imagery is an important task in precision agriculture. Here, we present a semi-automatic approach for agricultural parcel detection that achieves high accuracy and efficiency. Unlike the techniques presented in previous literatures, this method is pixel based, and it exploits the properties of a spectral angle mapper (SAM) to develop customized operators to accurately derive the parcels. The main steps of the method are sample selection, textural analysis, spectral homogenization, SAM, thresholding, and region growth. We have systematically evaluated the algorithm proposed on a variety of images from Gaofen-1 wide field of view (GF-1 WFV), Resource 1-02C (ZY1-02C), and Gaofen-2 (GF-2) to aerial image; the accuracies are 99.09% of GF-1 WFV, 84.42% of ZY1-02C, 96.51% and 92.18% of GF-2, and close to 100% of aerial image; these results demonstrated its accuracy and robustness.

2021 ◽  
Vol 41 (2) ◽  
pp. 0208002
Author(s):  
李江勇 Li Jiangyong ◽  
冯位欣 Feng Weixin ◽  
刘飞 Liu Fei ◽  
魏雅喆 Wei Yazhe ◽  
邵晓鹏 Shao Xiaopeng

2020 ◽  
Author(s):  
Florian Willomitzer ◽  
Prasanna Rangarajan ◽  
Fengqiang Li ◽  
Muralidhar Balaji ◽  
Marc Christensen ◽  
...  

Abstract The presence of a scattering medium in the imaging path between an object and an observer is known to severely limit the visual acuity of the imaging system. We present an approach to circumvent the deleterious effects of scattering, by exploiting spectral correlations in scattered wavefronts. Our Synthetic Wavelength Holography (SWH) method is able to recover a holographic representation of hidden targets with high resolution over a wide field of view. The complete object field is recorded in a snapshot-fashion, by monitoring the scattered light return in a small probe area. This unique combination of attributes opens up a plethora of new Non-Line-of-Sight imaging applications ranging from medical imaging and forensics, to early-warning navigation systems and reconnaissance. Adapting the findings of this work to other wave phenomena will help unlock a wider gamut of applications beyond those envisioned in this paper.


2019 ◽  
Vol 85 (11) ◽  
pp. 815-827 ◽  
Author(s):  
Mi Wang ◽  
Beibei Guo ◽  
Ying Zhu ◽  
Yufeng Cheng ◽  
Chenhui Nie

The Gaofen-1 (GF1) optical remote sensing satellite is the first in China's series of high-resolution civilian satellites and is equipped with four wide-field-of-view cameras. The cameras work together to obtain an image 800 km wide, with a resolution of 16 m, allowing GF1 to complete a global scan in four days. To achieve high-accuracy calibration of the wide-field-of-view cameras on GF1, the calibration field should have high resolution and broad coverage based on the traditional calibration method. In this study, a GF self-calibration scheme was developed. It uses partial reference calibration data covering the selected primary charge-coupled device to achieve high-accuracy calibration of the whole image. Based on the absolute constraint of the ground control points and the relative constraint of the tie points of stereoscopic images, we present two geometric calibration models based on paired stereoscopic images and three stereoscopic images for wide-field-of-view cameras on GF1, along with corresponding stepwise internal-parameter estimation methods. Our experimental results indicate that the internal relative accuracy can be guaranteed after calibration. This article provides a new approach that enables large-field-of-view optical satellites to achieve high-accuracy calibration based on partial calibration-field coverage.


2007 ◽  
Vol 364-366 ◽  
pp. 550-554
Author(s):  
Jun Chang ◽  
Zhi Cheng Weng ◽  
Yong Tian Wang ◽  
De Wen Cheng ◽  
Hui Lin Jiang

In this paper, we are presenting a design method and its results for a space optical system with high resolution and wide field of view. This optical system can be used both in infrared and visible configurations. The designing of this system is based on an on-axis three-mirror anastigmatic (TMA) system. Here the on-axis concept allows wide field of view (FOV) enabling a diversity of designs available for the Multi-Object Spectrometer instruments optimized for low scattered and low emissive light. The available FOVs are upto 1º in both spectrum ranges, whereas the available aperture range is F/15 - F/10. The final optical system is a three-mirror telescope with two on-axis and one off-axis segment and its resolution is 0.3m or even lower. The distinguished feature of this design is that it maintains diffraction-limited image at wide wavelengths. The technological developments in the field of computer generated shaping of large-sized optical surface details with diffraction-limited imagery have opened new avenues towards the designing techniques. Such techniques permit us to expand these technological opportunities to fabricate the aspherical off-axis mirrors for a complex configuration.


2002 ◽  
Vol 2 (10) ◽  
pp. 134-134
Author(s):  
R. W. Massof ◽  
L. Brown ◽  
M. D. Shapiro ◽  
G. D. Barnett ◽  
F. H. Baker

2006 ◽  
Vol 18 (6) ◽  
pp. 787-794
Author(s):  
Xiaodong Tao ◽  
◽  
Hyungsuck Cho ◽  
Youngjun Cho ◽  

Vision techniques used in automatic microassembly are limited by inherent problems such as small depth of focus and small field of view. Microassembly must, however, initially detect microparts in a wide field of view and large depth of field while maintaining high resolution. We propose microassembly using active zooming that can overcome these limitations. For a small field of view, active zooming prevents the target from getting out of the field of view during microassembly. For a small depth of focus, our proposal is based on focus measure to maintain clear target image in the field of view during microassembly. Two-step assembly thus ensures zoom microscopy maintaining a wide field of view and large depth of field initially and high resolution at the end. Peg-in-hole assembly experiments confirmed the feasibility of our proposal.


Author(s):  
K. Ogura ◽  
J. Teshima

Observation of extremely thin insulating layers of silicon oxide and silicon nitride formed on a trench with a conventional EE SEM cannot be satisfactorily carried out by the conventional method to mechanically polish and chemically etch the wafer cross section and then investigate the state of layer formation from the uncvenness appearing on the cross section. One reason is that the resolution of the conventional FE SEM is not enough for the observation of several nm thick layers even if they arc etched. Another reason is that true layer thickness may be obscured by chemical etching. Those are why TEMs have been used for the observation of extremely thin insulating layers on trenches with atomic resolution. However, TEM application includes complicated specimen preparation, and does not allow observation of wide field of view. Therefore, the ultra-high resolution SEM (UHR SEM) has recently been used for similar purposes, using a simply cleaved plane of a wafer.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1789 ◽  
Author(s):  
Yanqin Ge ◽  
Yanrong Li ◽  
Jinyong Chen ◽  
Kang Sun ◽  
Dacheng Li ◽  
...  

Since requirements of related applications for time series remotely-sensed images with high spatial resolution have been hard to be satisfied under current observation conditions of satellite sensors, it is key to reconstruct high-resolution images at specified dates. As an effective data reconstruction technique, spatiotemporal fusion can be used to generate time series land surface parameters with a clear geophysical significance. In this study, an improved fusion model based on the Sparse Representation-Based Spatiotemporal Reflectance Fusion Model (SPSTFM) is developed and assessed with reflectance data from Gaofen-2 Multi-Spectral (GF-2 MS) and Gaofen-1 Wide-Field-View (GF-1 WFV). By introducing a spatially enhanced training method to dictionary training and sparse coding processes, the developed fusion framework is expected to promote the description of high-resolution and low-resolution overcomplete dictionaries. Assessment indices including Average Absolute Deviation (AAD), Root-Mean-Square Error (RMSE), Peak Signal to Noise Ratio (PSNR), Correlation Coefficient (CC), spectral angle mapper (SAM), structure similarity (SSIM) and Erreur Relative Global Adimensionnelle de Synthèse (ERGAS) are then used to test employed fusion methods for a parallel comparison. The experimental results show that more accurate prediction of GF-2 MS reflectance than that from the SPSTFM can be obtained and furthermore comparable with popular two-pair based reflectance fusion models like the Spatial and Temporal Adaptive Fusion Model (STARFM) and the Enhanced-STARFM (ESTARFM).


Sign in / Sign up

Export Citation Format

Share Document