THREE-INPUTS-ONE-OUTPUT CURRENT-MODE UNIVERSAL BIQUAD USING TWO CURRENT CONVEYORS

2013 ◽  
Vol 22 (09) ◽  
pp. 1340001 ◽  
Author(s):  
JIUN-WEI HORNG ◽  
TO-YAO CHIU ◽  
CHING-PAO HSIAO ◽  
GUANG-TING HUANG

A current-mode universal biquadratic filter with three input terminals and one output terminal is presented. The architecture uses two current conveyors (CCs), two grounded capacitors and two grounded resistors; and can realize all standard second-order filter functions — highpass, bandpass, lowpass, notch and allpass. Moreover, the circuit still offers the following advantage features: very low active and passive sensitivities, using of grounded capacitors and resistors which is ideal for integrated circuit implementation, without requirements for critical component matching conditions and very high output impedance. The workability of the proposed circuit has been verified via HSPICE simulations using TSMC 0.18 μm, level 49 MOSFET technology.

2013 ◽  
Vol 22 (01) ◽  
pp. 1250077 ◽  
Author(s):  
CHEN-NONG LEE

This paper presents a versatile universal current-mode and transresistance-mode biquadratic filter using only two multiple outputs second-generation current conveyors (MOCCIIs), two grounded capacitors, and three grounded resistors. The proposed configuration can realize all five standard filtering functions from one current-output terminal and one voltage-output terminal, and also provide all these filtering functions from different current-output and voltage-output terminals without changing the filter topology. Moreover, the proposed biquad filter still achieves many advantages like the employment of all grounded passive components, and the minimum number of active component counts, in addition to having no need of inverting-type input signals or double-type input signals for the use of special input signals, high output impedance and low sensitivity performance. H-Spice simulation results confirm the theory.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Hua-Pin Chen

This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.


2017 ◽  
Vol 26 (06) ◽  
pp. 1750094 ◽  
Author(s):  
Phatsagul Thitimahatthanagusol ◽  
Charinsak Saetiaw ◽  
Thanaset Thosdeekoraphat ◽  
Chanchai Thongsopa ◽  
Saksit Summart

This paper introduces a current-mode first-order all-pass filter (APF) and its application in quadrature oscillator (QO) based on CCCII. The proposed filter can provide inverting and noninverting all-pass functions with a same circuit topology, it uses two CCCIIs and one grounded capacitor. Moreover, the first-order all-pass filter was applied in current-mode sinusoidal quadrature oscillators with the design based on block diagrams. The introduced oscillators can provide four phase-quadrature signals which independently control the condition of oscillation (CO) and frequency of oscillation (FO). The proposed oscillators consist of three CCCIIs and two grounded capacitors. The proposed APF and QOs have high output impedance which can directly drive load without additional current buffer. In addition, they use only grounded capacitors which are very appropriate to future development into an integrated circuit. The results of PSPICE simulation program correspond to the theoretical analysis.


Author(s):  
Jiun-Wei Horng

Background: A current-mode universal first-order filter with three input terminals and one output terminal is presented. Methods: The proposed circuit uses one differential difference current conveyor (DDCC), one grounded capacitor and two resistors. Results: This circuit offers the following advantageous features: high output impedance, employing only one active component, using a grounded capacitor, the versatility to synthesize any type of first-order filter transfer functions. Conclusion: Each standard first-order filter function can be obtained by using only one current input signal from the proposed circuit.


2016 ◽  
Vol 25 (09) ◽  
pp. 1650106 ◽  
Author(s):  
Chen-Nong Lee

None of the previously reported mixed-mode universal filters can achieve the following important advantage: no need of component matching conditions. This paper presents a new mixed-mode (including voltage, current, transadmittance, and transimpedance modes) universal biquadratic filter with no need of matching conditions (including no need of component matching and no need of input matching conditions). The proposed filter structure with nine outputs employs two plus-type fully differential current conveyors (P-type FDCCIIs), two grounded capacitors, four grounded resistors and one floating/grounded resistor, which can realize voltage, current, transadmittance, and transimpedance modes universal filtering responses (lowpass, highpass, bandpass, notch, and allpass) from the same topology without matching conditions. Moreover, the proposed circuit still offers many important advantages: the employment of two grounded capacitors, the simultaneous realizations of a lot of filtering functions, using only grounded resistors as the control factors of all filter parameters and gains, having controllable gains in current and transimpedance modes without disturbing filter parameters [Formula: see text], [Formula: see text]/Q, and Q, cascadably connecting the former voltage-mode (VM) stage and the latter current-mode (CM) stage, no capacitors bringing extra poles degrading high-frequency performance, and low active and passive sensitivity performances. H-spice simulations with TSMC 0.18[Formula: see text][Formula: see text]m 1[Formula: see text]P6M CMOS process technology validate theoretical predictions.


Author(s):  
Montree Kumngern

In this paper, a current-mode quadrature oscillator using second-generation current conveyors (CCIIs) is presented. The proposed oscillator consists of two CCIIs, two grounded capacitors and two grounded resistors. The circuit is suitable for integrated circuit implementation by using grounded capacitors. In addition, a new current-controlled current-mode quadrature oscillator using two current controlled second generation current conveyors (CCCIIs) and two grounded capacitors can be obtained by replacing CCIIs and resistors series at X terminals with CCCIIs. The condition of oscillation and frequency of oscillation can be orthogonally controlled. The frequency of oscillation can be controlled by grounded resistors and external bias currents. The proposed circuits have been simulated by SPICE simulations. The simulation results are confirmed the proposed theory.


Sign in / Sign up

Export Citation Format

Share Document