Mixed-Mode Universal Biquadratic Filter with No Need of Matching Conditions

2016 ◽  
Vol 25 (09) ◽  
pp. 1650106 ◽  
Author(s):  
Chen-Nong Lee

None of the previously reported mixed-mode universal filters can achieve the following important advantage: no need of component matching conditions. This paper presents a new mixed-mode (including voltage, current, transadmittance, and transimpedance modes) universal biquadratic filter with no need of matching conditions (including no need of component matching and no need of input matching conditions). The proposed filter structure with nine outputs employs two plus-type fully differential current conveyors (P-type FDCCIIs), two grounded capacitors, four grounded resistors and one floating/grounded resistor, which can realize voltage, current, transadmittance, and transimpedance modes universal filtering responses (lowpass, highpass, bandpass, notch, and allpass) from the same topology without matching conditions. Moreover, the proposed circuit still offers many important advantages: the employment of two grounded capacitors, the simultaneous realizations of a lot of filtering functions, using only grounded resistors as the control factors of all filter parameters and gains, having controllable gains in current and transimpedance modes without disturbing filter parameters [Formula: see text], [Formula: see text]/Q, and Q, cascadably connecting the former voltage-mode (VM) stage and the latter current-mode (CM) stage, no capacitors bringing extra poles degrading high-frequency performance, and low active and passive sensitivity performances. H-spice simulations with TSMC 0.18[Formula: see text][Formula: see text]m 1[Formula: see text]P6M CMOS process technology validate theoretical predictions.

2013 ◽  
Vol 22 (09) ◽  
pp. 1340001 ◽  
Author(s):  
JIUN-WEI HORNG ◽  
TO-YAO CHIU ◽  
CHING-PAO HSIAO ◽  
GUANG-TING HUANG

A current-mode universal biquadratic filter with three input terminals and one output terminal is presented. The architecture uses two current conveyors (CCs), two grounded capacitors and two grounded resistors; and can realize all standard second-order filter functions — highpass, bandpass, lowpass, notch and allpass. Moreover, the circuit still offers the following advantage features: very low active and passive sensitivities, using of grounded capacitors and resistors which is ideal for integrated circuit implementation, without requirements for critical component matching conditions and very high output impedance. The workability of the proposed circuit has been verified via HSPICE simulations using TSMC 0.18 μm, level 49 MOSFET technology.


2014 ◽  
Vol 23 (07) ◽  
pp. 1450102 ◽  
Author(s):  
CHEN-NONG LEE

This paper presents a transadmittance-mode (TAM) universal biquad filter with independently electronic tunability. The proposed biquad filter only employs three operational transconductance amplifiers (OTAs) and two grounded capacitors which are the minimum components count necessary for realizing independently electronic tunability of the parameters ω0 and ω0/Q without the need of control factors matching conditions. Moreover, the proposed circuit still achieves nearly all of the main advantages: (i) simultaneous realizations of universal filtering responses (low-pass, high-pass, band-pass, band-reject and all-pass) from the same topology, (ii) versatile input/output functions, (iii) orthogonally electronic tunability of the parameters ω0 and Q without the need of control factors matching conditions, (iv) no need of any resistors, (v) cascadable feature for all input and output terminals, (vi) no need of extra inverting or non-inverting amplifiers, (vii) the employment of only grounded capacitors, (viii) no component-value constraints (except for allpass filter function) and (ix) low active and passive sensitivity performances. H-spice simulations with TSMC 0.35 μm 2P4M CMOS process technology validate theoretical predictions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hua-Pin Chen

A novel voltage-mode multifunction biquadratic filter with one input and six outputs is presented. The proposed circuit can realize inverting and noninverting low-pass, bandpass, and high-pass filters, simultaneously, by using two inverting second-generation current conveyors (ICCIIs), two grounded capacitors, and four resistors. Moreover, the proposed circuit offers the following attractive advantages: no requirements for component matching conditions, the use of only grounded capacitors, and low active and passive sensitivities. HSPICE and MATLAB simulations results are provided to demonstrate the theoretical analysis.


2013 ◽  
Vol 22 (01) ◽  
pp. 1250077 ◽  
Author(s):  
CHEN-NONG LEE

This paper presents a versatile universal current-mode and transresistance-mode biquadratic filter using only two multiple outputs second-generation current conveyors (MOCCIIs), two grounded capacitors, and three grounded resistors. The proposed configuration can realize all five standard filtering functions from one current-output terminal and one voltage-output terminal, and also provide all these filtering functions from different current-output and voltage-output terminals without changing the filter topology. Moreover, the proposed biquad filter still achieves many advantages like the employment of all grounded passive components, and the minimum number of active component counts, in addition to having no need of inverting-type input signals or double-type input signals for the use of special input signals, high output impedance and low sensitivity performance. H-Spice simulation results confirm the theory.


2014 ◽  
Vol 23 (09) ◽  
pp. 1450123 ◽  
Author(s):  
HALIL ALPASLAN ◽  
ERKAN YUCE

In this paper, a new two-input three-output second-order universal filter is proposed. Two multi-output voltage controlled current followers (MO-VCCFs) and two capacitors are used in the proposed filter. The proposed filter does not have external passive resistors. It has high output impedances yielding easy cascadability. It has the property of electronic tunability. It does not need any critical passive component matching conditions. Also, it is composed of only grounded capacitors; accordingly, it is suitable for integration. Theoretical knowledge is supported via SPICE simulations.


2014 ◽  
Vol 889-890 ◽  
pp. 886-889
Author(s):  
Wen Qin Cao ◽  
Hai Yan Zhu ◽  
Guo Ping Tu

This paper presents a new approach for making a four bit priority resolution circuit using current mode winner Take all (WTA) analog computation cells, the winner-takes-all circuit is employed to evaluate the highest input among a set of competing inputs and inhibit the others. This circuit consists of an input stage, a current mode Lazzaros WTA circuit and an output stage consisting of current mirror and load resistor. This circuit is compact, consisting of a total of 28 transistors including the input stage, and a good linearity is observed in response. Simulation of proposed circuit is performed on cadence virtuoso software in 0.18 μm CMOS process technology.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Hua-Pin Chen

This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.


2016 ◽  
Vol 25 (05) ◽  
pp. 1650034 ◽  
Author(s):  
Punnavich Phatsornsiri ◽  
Montree Kumngern ◽  
Panit Lamun

This paper presents a new voltage-mode (VM) universal biquadratic filter using differential difference current conveyor transconductance amplifier (DDCCTA) as an active element. The circuit employs one DDCCTA, two floating resistors and two floating capacitors which can realize five biquadratic filters, namely low-pass (LP), band-pass (BP), band-stop (BS), high-pass (HP) and all-pass (AP) into one single topology. For realizing these filtering functions, passive component-matching conditions, inverting-type and/or doubling-input signal requirements and changing circuit configuration are absent. The natural angular frequency and quality factor of the filter can be orthogonally controlled deliberately. The VM biquadratic filter using grounded passive components with high-input and low-output impedances can be obtained by adding an additional DDCCTA or differential difference current conveyor (DDCC). The simulation results with 0.5[Formula: see text][Formula: see text]m CMOS process from MIETEC are given to confirm the theoretical predictions and the experimental results are also included to verify the workability of the proposed structure.


1995 ◽  
Vol 18 (3) ◽  
pp. 171-177 ◽  
Author(s):  
Muhammad Taher Abuelma'atti ◽  
Aamir Alam Farooqui

A new universal active current-mode filter with single input and five outputs is presented. The proposed filter avoids the use of feedback in any part of the circuit and uses only grounded resistors and grounded capacitors. The proposed circuit can simultaneously realize lowpass, highpass, bandpass, allpass, and notch biquadratic filter functions.


2016 ◽  
Vol 25 (05) ◽  
pp. 1650042 ◽  
Author(s):  
Erkan Yuce ◽  
Shahram Minaei

In this paper, a new first-order current-mode (CM) universal filter employing two dual output second-generation current conveyors (DO-CCIIs), one resistor and a grounded capacitor is proposed. The proposed filter has low input and high output impedances; thus, it can be easily connected with other CM circuits. It can simultaneously realize first-order low-pass (LP) and all-pass (AP) responses and can provide high-pass (HP) response with interconnection of LP and AP responses. It can be tuned electronically by replacing with dual output second-generation current controlled conveyors (DO-CCCIIs) instead of DO-CCIIs and removing the resistor. It has only a resistor but no capacitor connected in series to X terminal of DO-CCII; accordingly, it can be operated at high frequencies. Also, it does not need any critical passive component matching conditions and cancellation constraints. A number of simulation results based on SPICE program are included to exhibit performance, workability and effectiveness of the proposed filter configuration.


Sign in / Sign up

Export Citation Format

Share Document