Nonlinear Controller: Voltage Controlled PFC-Based Fuzzy MDPSM Controller with Predictive Input Voltage

2020 ◽  
Vol 29 (13) ◽  
pp. 2050207
Author(s):  
R. Thangam ◽  
S. P. Joy Vasantha Rani

In this paper, the design of a fuzzy rule-based MDPSM controlled buck converter is analyzed. Power factor improvement and harmonic minimization for the buck converter connected through the variable load with a fuzzy rule are discussed and simulated. The MDPSM controlled converter is supplied with 230[Formula: see text]V and reaches 15[Formula: see text]V as output. The converter output, always connected with nonlinear loads, causes less power factor with more harmonics and gives less power quality. Active PFC with a fuzzy-based voltage controlled power factor controller is designed to reduce total harmonics and to raise the power factor value equal to unity. The fuzzy-based MDPSM controller was designed using MATLAB Simulink. Controller output waveforms are examined and analyzed with other controller performances. The converter is rated with 2[Formula: see text]mA, 0.5[Formula: see text]mH and 212[Formula: see text][Formula: see text]F values with output power 48[Formula: see text]W. The converter is tested for different resistive loads and inductive loads.

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5760
Author(s):  
Eduardo Campos-Mercado ◽  
Edwin Fernando Mendoza-Santos ◽  
Jorge Antonio Torres-Muñoz ◽  
Edwin Román-Hernández ◽  
Víctor Iván Moreno-Oliva ◽  
...  

In this paper, we present a nonlinear PID controller based on saturation functions with variable parameters in order to regulate the output voltage of a buck converter in the presence of changes in the input voltage. The main feature of the proposed controller is to bound the control input with a variable parameter to avoid the windup effect generated by the combination of the integral control action and some operation conditions. The main advantages of the proposed nonlinear PID controller are its low computing cost and the simple tuning task to implement the control strategy in an embedded system. The acceptable behavior of the closed-loop system is presented through the simulation and experimental results.


2020 ◽  
pp. 20-23
Author(s):  
Pradeep Katta ◽  
Mohammed Ovaiz A ◽  
Prabaakaran K ◽  
Priya M ◽  
Keerthana K ◽  
...  

This paper includes the design and implementation of a new electric vehicle charger, which is powered using a battery consisting of an enhanced power factor frontend. The traditional diode that is at the source end is omitted in the proposed design using the conventional power factor improvement inverter. The inverter has its parameters closer to the configuration of a basic push pull converter. The above-mentioned converter works with the phenomenon of electric vehicle battery control. Two modes of operation are incorporated out of which the former one is constant current mode and the latter is constant voltage mode. To obtain the desired regulation of DC voltage at the point of coupling and also to improve the operational efficiency to unity power factor, the proposed Landsman converter is operated using a single sensed individual. This method yields improved power quality, less harmonics in comparison with a conventional one. A prototype is constructed and tested by charging a 48V electric vehicle battery of 100Ah size under the transients in input voltage to display the proposed charger to an IEC61000-32 standard. All the cases are said to be satisfied by performance of the charger.


Author(s):  
Yuki Satake ◽  
Hiroyuki Furuya ◽  
Yohei Mochizuki ◽  
Yuji Fukaishi ◽  
Kohji Higuchi ◽  
...  

In recent years, improving of power factor and reducing harmonic distortion in electrical instruments are needed. In general, a current conduction mode boost converter is used for active PFC (Power Factor Correction). In a PFC boost converter, if a duty ratio, a load resistance and an input voltage are changed, the dynamic characteristics are varied greatly. This is the prime reason of difficulty of controlling the interleaved PFC boost converter. In this paper, a robust digital controller for suppressing the change of step response characteristics and variation of output voltage at a DC-DC buck converter load sudden change with high power factor and low harmonic is proposed. Experimental studies using a micro-processor for controller demonstrate that the proposed digital controller is effective to improve power factor and to suppress output voltage variation.


Author(s):  
Winarno Fadjar Bastari ◽  
John Geral Mesah

The unidirectional voltage source is obtained through an uncontrolled 220 Volt single phase full wave rectifier circuit. Installation of large amount capacitors as a filter affect input waveform. Due to the harmonics distort sinusoidal input voltage from the PLN grid. The difference in voltage waveforms and input currents that occur can affect the value of the resulting factor. Based on this problem, a study was made on theimprovement of power factors using a series of Interleaved Boost Converter which functioned as a series of Power Factor Correction (PFC) and voltage regulators with a setting method using Fuzzy logic. This Interleaved Boost Converter circuit is made to work in the condition of the Discontinues Conduction Mode (DCM) so that any load that is supplied to the circuit will make the system resistive. So, it is expected that thevoltage and input current waveforms will produce a factor value close to the unity value. The results of this study are the Interleaved Boost Converter series that can be used as a Power Factor Correction circuit and also as a voltage regulator. It improves power factor from 0.9 to 0.93.


Author(s):  
SUMAN TOLANUR ◽  
S.N KESHAVA MURTHY

The paper presents a single-stage high-power-factor electronic ballast for metal halide lamps. The proposed ballast integrates a buck-boost converter, a buck converter and a full-bridge inverter into a single power conversion circuit. The buck-boost converter served as a power factor corrector (PFC) is designed to operate at discontinuous conduction mode (DCM) to achieve nearly a unity power factor at the input line. By adjusting the duty-ratio of the active switches of the PFC, the lamp power is remained at rated value for universal input voltage ranged from 90 Vrms to 264 Vrms. The four active switches of the full-bridge inverter, an inductor and a capacitor form a bidirectional buck converter which supplies a low frequency square-wave currentfor the lamp at to avoid the lamp from happing acoustic resonance. The circuit operation is analyzed in detail to derive the design equations. A prototype electronic ballast for a 70 W metal halide lamp is built and tested.


2016 ◽  
Vol 136 (12) ◽  
pp. 991-996 ◽  
Author(s):  
Masataka Minami ◽  
Takeshi Ito ◽  
Shin-ichi Motegi ◽  
Masakazu Michihira

Sign in / Sign up

Export Citation Format

Share Document