ON THE SPATIAL ENTROPY OF TWO-DIMENSIONAL GOLDEN MEAN

2004 ◽  
Vol 14 (01) ◽  
pp. 309-319
Author(s):  
JONQ JUANG ◽  
SHIH-FENG SHIEH

The aim of this paper is to derive a sharper lower bound for the spatial entropy of two-dimensional golden mean.

2002 ◽  
Vol 12 (01) ◽  
pp. 115-128 ◽  
Author(s):  
SONG-SUN LIN ◽  
TZI-SHENG YANG

This work investigates binary pattern formations of two-dimensional standard cellular neural networks (CNN) as well as the complexity of the binary patterns. The complexity is measured by the exponential growth rate in which the patterns grow as the size of the lattice increases, i.e. spatial entropy. We propose an algorithm to generate the patterns in the finite lattice for general two-dimensional CNN. For the simplest two-dimensional template, the parameter space is split up into finitely many regions which give rise to different binary patterns. Qualitatively, the global patterns are classified for each region. Quantitatively, the upper bound of the spatial entropy is estimated by computing the number of patterns in the finite lattice, and the lower bound is given by observing a maximal set of patterns of a suitable size which can be adjacent to each other.


Algorithmica ◽  
2021 ◽  
Author(s):  
Seungbum Jo ◽  
Rahul Lingala ◽  
Srinivasa Rao Satti

AbstractWe consider the problem of encoding two-dimensional arrays, whose elements come from a total order, for answering $${\text{Top-}}{k}$$ Top- k queries. The aim is to obtain encodings that use space close to the information-theoretic lower bound, which can be constructed efficiently. For an $$m \times n$$ m × n array, with $$m \le n$$ m ≤ n , we first propose an encoding for answering 1-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, whose query range is restricted to $$[1 \dots m][1 \dots a]$$ [ 1 ⋯ m ] [ 1 ⋯ a ] , for $$1 \le a \le n$$ 1 ≤ a ≤ n . Next, we propose an encoding for answering for the general (4-sided) $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries that takes $$(m\lg {{(k+1)n \atopwithdelims ()n}}+2nm(m-1)+o(n))$$ ( m lg ( k + 1 ) n n + 2 n m ( m - 1 ) + o ( n ) ) bits, which generalizes the joint Cartesian tree of Golin et al. [TCS 2016]. Compared with trivial $$O(nm\lg {n})$$ O ( n m lg n ) -bit encoding, our encoding takes less space when $$m = o(\lg {n})$$ m = o ( lg n ) . In addition to the upper bound results for the encodings, we also give lower bounds on encodings for answering 1 and 4-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, which show that our upper bound results are almost optimal.


2007 ◽  
Vol 35 (3) ◽  
pp. 365-373 ◽  
Author(s):  
François Clautiaux ◽  
Antoine Jouglet ◽  
Joseph El Hayek

2018 ◽  
Vol 167 (02) ◽  
pp. 249-284 ◽  
Author(s):  
YANN BUGEAUD ◽  
YITWAH CHEUNG ◽  
NICOLAS CHEVALLIER

AbstractIn this paper we prove that the Hausdorff dimension of the set of (nondegenerate) singular two-dimensional vectors with uniform exponentμin (1/2, 1) is equal to 2(1 −μ) forμ⩾$\sqrt2/2$, whereas forμ<$\sqrt2/2$it is greater than 2(1 −μ) and at most equal to (3 − 2μ)(1 − μ)/(1 −μ+μ2). We also establish that this dimension tends to 4/3 (which is the dimension of the set of singular two-dimensional vectors) whenμtends to 1/2. These results improve upon previous estimates of R. Baker, joint work of the first author with M. Laurent, and unpublished work of M. Laurent. Moreover, we prove a lower bound for the packing dimension, which appears to be strictly greater than the Hausdorff dimension for μ ⩾ 0.565. . . .


2019 ◽  
Vol 63 (8) ◽  
pp. 1819-1848
Author(s):  
Dariusz Dereniowski ◽  
Dorota Osula

Abstract We consider the following on-line pursuit-evasion problem. A team of mobile agents called searchers starts at an arbitrary node of an unknown network. Their goal is to execute a search strategy that guarantees capturing a fast and invisible intruder regardless of its movements using as few searchers as possible. We require that the strategy is connected and monotone, that is, at each point of the execution the part of the graph that is guaranteed to be free of the fugitive is connected and whenever some node gains a property that it cannot be occupied by the fugitive, the strategy must operate in such a way to keep this property till its end. As a way of modeling two-dimensional shapes, we restrict our attention to networks that are embedded into partial grids: nodes are placed on the plane at integer coordinates and only nodes at distance one can be adjacent. Agents do not have any knowledge about the graph a priori, but they recognize the direction of the incident edge (up, down, left or right). We give an on-line algorithm for the searchers that allows them to compute a connected and monotone strategy that guarantees searching any unknown partial grid with the use of $O(\sqrt {n})$ O ( n ) searchers, where n is the number of nodes in the grid. As for a lower bound, there exist partial grids that require ${\varOmega }(\sqrt {n})$ Ω ( n ) searchers. Moreover, we prove that for each on-line searching algorithm there is a partial grid that forces the algorithm to use ${\varOmega }(\sqrt {n})$ Ω ( n ) searchers but $O(\log n)$ O ( log n ) searchers are sufficient in the off-line scenario. This gives a lower bound on ${\varOmega }(\sqrt {n}/\log n)$ Ω ( n / log n ) in terms of achievable competitive ratio of any on-line algorithm.


2013 ◽  
Vol 24 (08) ◽  
pp. 1299-1327 ◽  
Author(s):  
ROLF HARREN ◽  
KLAUS JANSEN ◽  
LARS PRÄDEL ◽  
ULRICH M. SCHWARZ ◽  
ROB VAN STEE

In this paper, we study the two-dimensional geometrical bin packing problem (2DBP): given a list of rectangles, provide a packing of all these into the smallest possible number of unit bins without rotating the rectangles. Beyond its theoretical appeal, this problem has many practical applications, for example in print layout and VLSI chip design. We present a 2-approximate algorithm, which improves over the previous best known ratio of 3, matches the best results for the problem where rotations are allowed and also matches the known lower bound of approximability. Our approach makes strong use of a PTAS for a related 2D knapsack problem and a new algorithm that can pack instances into two bins if OPT = 1.


1993 ◽  
Vol 03 (01) ◽  
pp. 71-84 ◽  
Author(s):  
DORON NUSSBAUM ◽  
JÖRG-RÜDIGER SACK

This paper deals with the computational complexity of disassembling 2-dimensional composite parts (comprised of M simple n-vertex polygons) via collision-free translations. The first result of this paper is an O(Mn+M log M) algorithm for computing a sequence of translations (performed in a common direction) to disassemble composite parts. The algorithm improves on the O(Mn log Mn) bound previously established for this problem and is easily seen to be optimal. The problem had been posed by Nurmi and by Toussaint. The second result of this paper is an Ω(Mn+M log M) lower bound proof for the problem of detecting whether a composite part can be disassembled, or contains interlocking subparts. Thus, detecting the existence of a disassembly sequence is as hard as computing one. As a consequence, the algorithm for computing a disassembly sequence is optimal also for the detecting problem.


Sign in / Sign up

Export Citation Format

Share Document