CHAOTIC CONTROL AND CHAOTIFICATION USING FUZZY APPROACH

2008 ◽  
Vol 18 (01) ◽  
pp. 263-274
Author(s):  
KUANG-YOW LIAN ◽  
CHENG-SEA HUANG ◽  
WEN-HSIEN FANG ◽  
CHIEN-HSING SU

In this paper, we propose a fuzzy model-based methodology to deal with various control objectives for discrete-time chaotic systems from a unified viewpoint. With intent to unify the design process, we introduce a new design concept called virtual-desired-variable synthesis. Then, both the chaotic control and chaotification are eventually treated as a stabilization problem. Consequently, the conditions concerning the stability of the closed-loop system are formulated into LMIs. A feasible solution of the LMI problem guarantees the quadratical stability and gives the state feedback gains as well. The well-known Hénon map is used to demonstrate the unified approach.

Author(s):  
G P Liu ◽  
G R Duan ◽  
S Daley

The design of stable observer-based controllers for robust pole assignment is addressed in this paper. The stability problem of these dynamical controllers is investigated, which is often ignored during the controller design. A design formulation of stable observer controllers is presented using state-feedback pole assignment techniques. Although the design formulation is principally aimed at the design of a stable controller, the mixed sensitive function in the frequency domain is also considered to improve the robustness of the closed-loop system. This ensures that the closed-loop system has good robustness and the controller is stable.


2012 ◽  
Vol 488-489 ◽  
pp. 1793-1797
Author(s):  
R. Ghasemi ◽  
M.B. Menhaj ◽  
B. Abdi

This paper proposes a new method for designing a fuzzy adaptive controller for a class of non-affine nonlinear chaotic systems in which functions of the systems are unknown. The proposed method is aimed on a class of non-canonical non-affine nonlinear chaotic systems. The stability of the closed loop system is guaranteed based on Lyapunov’s theory. The proposed controller is robust against uncertainties and external disturbances. The simulation results show the effectiveness of the proposed method.


2012 ◽  
Vol 229-231 ◽  
pp. 2311-2314
Author(s):  
Jing Wang ◽  
Hong Xia Gao ◽  
Zhen Yu Tan ◽  
Jin Feng Gao

An adaptive control scheme based on neural networks is presented for control of hyper-chaotic systems. Parameters of neural networks and controllers are adjusted automatically to ensure the stability of the closed-loop system. Numerical simulation illustrates that the proposed control scheme is valid for hyper-chaotic system.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Xiaoyan Qin

This paper investigates the adaptive stabilization problem for a class of stochastic nonholonomic systems with strong drifts. By using input-state-scaling technique, backstepping recursive approach, and a parameter separation technique, we design an adaptive state feedback controller. Based on the switching strategy to eliminate the phenomenon of uncontrollability, the proposed controller can guarantee that the states of closed-loop system are global bounded in probability.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Liang Liu ◽  
Ming Gao

This paper considers the state feedback stabilization problem for a class of stochastic feedforward nonlinear systems. By using the homogeneous domination approach, a state feedback controller is constructed to render the closed-loop system globally asymptotically stable in probability. A simulation example is provided to show the effectiveness of the designed controller.


Author(s):  
Yiqi Xu

This paper studies the attitude-tracking control problem of spacecraft considering on-orbit refuelling. A time-varying inertia model is developed for spacecraft on-orbit refuelling, which actually includes two processes: fuel in the transfer pipe and fuel in the tank. Based upon the inertia model, an adaptive attitude-tracking controller is derived to guarantee the stability of the resulted closed-loop system, as well as asymptotic convergence of the attitude-tracking errors, despite performing refuelling operations. Finally, numerical simulations illustrate the effectiveness and performance of the proposed control scheme.


2012 ◽  
Vol 461 ◽  
pp. 763-767
Author(s):  
Li Fu Wang ◽  
Zhi Kong ◽  
Xin Gang Wang ◽  
Zhao Xia Wu

In this paper, following the state-feedback stabilization for time-varying systems proposed by Wolovich, a controller is designed for the overhead cranes with a linearized parameter-varying model. The resulting closed-loop system is equivalent, via a Lyapunov transformation, to a stable time-invariant system of assigned eigenvalues. The simulation results show the validity of this method.


1987 ◽  
Vol 109 (4) ◽  
pp. 320-327 ◽  
Author(s):  
C. K. Kao ◽  
A. Sinha ◽  
A. K. Mahalanabis

A digital state feedback control algorithm has been developed to obtain the near-minimum-time trajectory for the end-effector of a robot manipulator. In this algorithm, the poles of the linearized closed loop system are judiciously placed in the Z-plane to permit near-minimum-time response without violating the constraints on the actuator torques. The validity of this algorithm has been established using numerical simulations. A three-link manipulator is chosen for this purpose and the results are discussed for three different combinations of initial and final states.


2014 ◽  
Vol 11 (2) ◽  
pp. 14-21
Author(s):  
R. Mishkov ◽  
V. Petrov

Abstract The paper is dedicated to the derivation of a unified approach for nonlinear adaptive closed loop system design with nonlinear adaptive state and parameter observers combined with tuning functions-based nonlinear adaptive control for trajectory tracking. The proposed approach guarantees asymptotic stability of the closed loop nonlinear adaptive system with respect to the tracking and state estimation errors and Lyapunov stability of the parameter estimator. The advantages of the approach are the lack of over-parametrization, resulting in a minimal number of estimator equations and the preservation of the overdamped performance specifications of the closed loop nonlinear adaptive system in its whole range of operation. The application of the approach to a permanent magnet synchronous motor driven inverted pendulum concludes with simulation of the closed loop nonlinear adaptive system time responses.


Author(s):  
Shubo Yang ◽  
Xi Wang

Limit protection, which frequently exists as an auxiliary part in control systems, is not the primary motive of control but is a necessary guarantee of safety. As in the case of aircraft engine control, the main objective is to provide the desired thrust based on the position of the throttle; nevertheless, limit protection is indispensable to keep the engine operating within limits. There are plenty of candidates that can be applied to design the regulators for limit protection. PID control with gain-scheduling technique has been used for decades in the aerospace industry. This classic approach suggests linearizing the original nonlinear model at different power-level points, developing PID controllers correspondingly, and then scheduling the linear time-invariant (LTI) controllers according to system states. Sliding mode control (SMC) is well-known with mature theories and numerous successful applications. With the one-sided convergence property, SMC is especially suitable for limit protection tasks. In the case of aircraft engine control, SMC regulators have been developed to supplant traditional linear regulators, where SMC can strictly keep relevant outputs within their limits and improve the control performance. In aircraft engine control field, we all know that the plant is a nonlinear system. However, the present design of the sliding controller is carried out with linear models, which severely restricts the valid scope of the controller. Even if the gain scheduling technique is adopted, the stability of the whole systems cannot be theoretically proved. Research of linear parameter varying (LPV) system throws light on a class of nonlinear control problems. In present works, we propose a controller design method based on the LPV model to solve the engines control problem and achieve considerable effectiveness. In this paper, we discuss the design of a sliding controller for limit protection task of aircraft engines, the plant of which is described as an LPV system instead of LTI models. We define the sliding surface as tracking errors and, with the aid of vertex property, present the stability analysis of the closed-loop system on the sliding surface. An SMC law is designed to guarantee that the closed-loop system is globally attracted to the sliding surface. Hot day (ISA+30° C) takeoff simulations based on a reliable turbofan model are presented, which test the proposed method for temperature protection and verify its stability and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document