BOUNDS FOR THE SET CONTAINING ALL COMPACT INVARIANT SETS OF THE LINEARLY COUPLED LASER SYSTEM

2008 ◽  
Vol 18 (04) ◽  
pp. 1211-1217 ◽  
Author(s):  
KONSTANTIN E. STARKOV ◽  
KONSTANTIN K. STARKOV

In this paper we study the localization problem of all compact invariant sets of the five-dimensional coupled laser system by applying the first-order extremum conditions. Our main results consist in finding a number of localization sets formed by frusta, a circular cylinder, two parabolic cylinders and some other quadratic surfaces. Parameters of these localization sets are computed explicitly.

2007 ◽  
Vol 17 (11) ◽  
pp. 4213-4217 ◽  
Author(s):  
KONSTANTIN E. STARKOV

In this paper we study the localization problem of compact invariant sets of the optically injected laser system by applying the first order extremum conditions and cylindrical coordinates. Our main results consist in finding localization sets of simple forms which can be easily computed. Special attention is focussed on the case where we obtain a compact localization set.


2009 ◽  
Vol 19 (10) ◽  
pp. 3425-3432 ◽  
Author(s):  
KONSTANTIN E. STARKOV

In this paper, we study the localization problem of compact invariant sets of the system modeling the dynamics of acoustic gravity waves constructed by Stenflo (the Lorenz–Stenflo system). We discuss relations between compact localization domains and trapping domains with the help of extended invariance principle due to Rodrigues et al. Based on this analysis, we compute the trapping domain for the system modeling the dynamics of acoustic gravity waves. By using the first order extremum conditions and a comparison with localization results obtained earlier for the Lorenz system we find that all compact invariant sets of the Lorenz–Stenflo system are located in the intersection of one-parameter set of ellipsoids with a few domains bounded by some quadratic surfaces. Further, we derive polytopic bounds for the locus of compact invariant sets. Finally, we present the general formulae validating the application of rational localizing functions and use these formulae for the Lorenz–Stenflo system and for the Lorenz system.


2010 ◽  
Vol 20 (05) ◽  
pp. 1477-1483 ◽  
Author(s):  
KONSTANTIN E. STARKOV

In this paper, we study the localization problem of compact invariant sets of nonlinear systems possessing first integrals by using the first order extremum conditions and positive definite polynomials. In the case of natural polynomial Hamiltonian systems, our results include those in [Starkov, 2008] as a special case. This paper discusses the application to studies of the generalized Yang–Mills Hamiltonian system and the Hamiltonian system describing dynamics of hydrogenic atoms in external fields.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Luis N. Coria

This paper studies the problem of bounding a domain that contains all compact invariant sets of the Hastings-Powell system. The results were obtained using the first-order extremum conditions and the iterative theorem to a biologically meaningful model. As a result, we calculate the bounds given by a tetrahedron with excisions, described by several inequalities of the state variables and system parameters. Therefore, a region is identified where all the system dynamics are located, that is, its compact invariant sets: equilibrium points, periodic-homoclinic-heteroclinic orbits, and chaotic attractors. It was also possible to formulate a nonexistence condition of the compact invariant sets. Additionally, numerical simulations provide examples of the calculated boundaries for the chaotic attractors or periodic orbits. The results provide insights regarding the global dynamics of the system.


2006 ◽  
Vol 16 (11) ◽  
pp. 3249-3256 ◽  
Author(s):  
ALEXANDER P. KRISHCHENKO ◽  
KONSTANTIN E. STARKOV

In this paper, we examine the localization problem of compact invariant sets of systems with the differentiable right-side. The localization procedure consists in applying the iterative algorithm based on the first order extremum condition originally proposed by one of authors for periodic orbits. Analysis of a location of compact invariant sets of the Lanford system is realized for all values of its bifurcational parameter.


1999 ◽  
Vol 66 (3) ◽  
pp. 598-606 ◽  
Author(s):  
Xiangzhou Zhang ◽  
Norio Hasebe

An exact elasticity solution is developed for a radially nonhomogeneous hollow circular cylinder of exponential Young’s modulus and constant Poisson’s ratio. In the solution, the cylinder is first approximated by a piecewise homogeneous one, of the same overall dimension and composed of perfectly bonded constituent homogeneous hollow circular cylinders. For each of the constituent cylinders, the solution can be obtained from the theory of homogeneous elasticity in terms of several constants. In the limit case when the number of the constituent cylinders becomes unboundedly large and their thickness tends to infinitesimally small, the piecewise homogeneous hollow circular cylinder reverts to the original nonhomogeneous one, and the constants contained in the solutions for the constituent cylinders turn into continuous functions. These functions, governed by some systems of first-order ordinary differential equations with variable coefficients, stand for the exact elasticity solution of the nonhomogeneous cylinder. Rigorous and explicit solutions are worked out for the ordinary differential equation systems, and used to generate a number of numerical results. It is indicated in the discussion that the developed method can also be applied to hollow circular cylinders with arbitrary, continuous radial nonhomogeneity.


1983 ◽  
Vol 132 ◽  
pp. 163-183 ◽  
Author(s):  
William S. Vorus

This paper proposes a high-Reynolds-number theory for the approximate analysis of timewise steady viscous flows. Its distinguishing feature is linearity. But it differs fundamentally from Oseen's (1910) well-known linear theory. Oseen flow is a variation on Stokes flow at the low-Reynolds-number limit.The theory is developed for a %dimensional body moving through an infinite incompressible fluid. The velocity-vorticity formulation is employed. A boundary integral expressing the body contour velocity is written in terms of Green functions of the approximate governing differential equations. The boundary integral contains three unknown boundary distributions. These are a velocity source density, the boundary vorticity, and the normal gradient of the boundary vorticity. The unknown distributions are determined as the solutions to a boundary-integral equation formed from the velocity integral by the prescription of zero relative fluid velocity on the body boundary.The linear integral-equation formulation is applied specifically to the case of thin bodies, such that the boundary condition is satisfied approximately on the streamwise coordinate axis. The integral equation is then reduced to its leading-order contribution in the limit of infinite Reynolds number. The unknown distributions uncouple in the first-order formulation, and analytic solutions are obtained. A most interesting result appears at this point: the theory recovers linearized airfoil theory in the first-order infinite-Reynolds-number limit; the airfoil integral equation determines one of the three contour distributions sought.The first-order theory is then demonstrated by application to two classical cases: the zero-thickness flat plate at zero incidence, and the circular cylinder.For the flat plate, the streamwise velocity near the plate predicted by the proposed linear theory is compared with that of Blasius's solution to the laminar boundary-layer equations (Schlichting 1968). The linear theory predicts a fuller profile, tending more toward the character expected of the timewise steady turbulent profile. This character is also exhibited in the predicted velocity distribution across the plate wake, which is compared with Goldstein's asymptotic boundary-layer solution (Schlichting 1968). The wake defect is more severe according to the proposed theory.For the case of the circular cylinder, application of the formulation is not truly valid, since the circular cylinder is not a thin body. The theory does, however, predict that the flow separates. The separation points are predicted to lie at position angles of approximately ± 135°, with angle measured from the forward stagnation point. This compares with the prediction of 109O from the Blasius series solution to the laminar boundary-layer equations (Schlichting 1968).The theory is next applied to the case of a non-zero-thickness flat plate with incidence. From the fully attached flow at zero incidence, the theory predicts that both Ieading-edge separation and reattachment and trailing-edge separation appear on the suction side at small angle. On increasing incidence, the forward reattachment point moves aft, and the aft separation point moves forward. Coalescence occurs near midchord, and the foil is thereafter fully separated.Finally, the first-order contribution to the far-field velocity at high Reynolds number is shown to be identically that corresponding to the ideal flow. This result, coupled with the recovery of linearized thin-foil theory in the near-field limit, is argued to support strongly the physical idea that the ideal flow is, in fact, the limiting state of the complete field flow at infinite Reynolds number. Flow separation can be viewed as present in the ideal flow limit; i t is simply embedded in the infinitesimally thin body-surface vortex sheets into which the entire viscous field collapses as vorticity convection overwhelms vorticity diffusion at the infinite-Reynolds-number limit.


2019 ◽  
Vol 9 (20) ◽  
pp. 4390
Author(s):  
Yan Wang ◽  
Hao Wu ◽  
Chao Chen ◽  
Yinli Zhou ◽  
Yubing Wang ◽  
...  

In this paper, a widely tunable external cavity diode laser (ECDL) with an ultra-high side mode suppression ratio (SMSR) was fabricated. Three configurations were constructed to investigate the relationship between the grating features and the SMSR. When a 1200 grooves/mm grating with a first order diffraction efficiency of 91% is utilized in the external-cavity laser system, a maximum SMSR of 65 dB can be achieved. In addition, the tunable range reaches 209.9 nm. The results show that the laser performance can be improved by proper high grating groove number and first-order diffraction efficiency.


Sign in / Sign up

Export Citation Format

Share Document